Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
J Urol ; 212(2): 290-298, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38785259

ABSTRACT

PURPOSE: Survivors of surgically managed prostate cancer may experience urinary incontinence and erectile dysfunction. Our aim was to determine if 68Ga-prostate-specific membrane antigen-11 positron emission tomography CT (PSMA-PET) in addition to multiparametric (mp) MRI scans improved surgical decision-making for nonnerve-sparing or nerve-sparing approach. MATERIALS AND METHODS: We prospectively enrolled 50 patients at risk for extraprostatic extension (EPE) who were scheduled for prostatectomy. After mpMRI and PSMA-PET images were read for EPE prediction, surgeons prospectively answered questionnaires based on mpMRI and PSMA-PET scans on the decision for nerve-sparing or nonnerve-sparing approach. Final whole-mount pathology was the reference standard. Sensitivity, specificity, positive predictive value, negative predictive value, and receiver operating characteristic curves were calculated and McNemar's test was used to compare imaging modalities. RESULTS: The median age and PSA were 61.5 years and 7.0 ng/dL. The sensitivity for EPE along the posterior neurovascular bundle was higher for PSMA-PET than mpMRI (86% vs 57%, P = .03). For MRI, the specificity, positive predictive value, negative predictive value, and area under the curve for the receiver operating characteristic curves were 77%, 40%, 87%, and 0.67, and for PSMA-PET were 73%, 46%, 95%, and 0.80. PSMA-PET and mpMRI reads differed on 27 nerve bundles, with PSMA-PET being correct in 20 cases and MRI being correct in 7 cases. Surgeons predicted correct nerve-sparing approach 74% of the time with PSMA-PET scan in addition to mpMRI compared to 65% with mpMRI alone (P = .01). CONCLUSIONS: PSMA-PET scan was more sensitive than mpMRI for EPE along the neurovascular bundles and improved surgical decisions for nerve-sparing approach. Further study of PSMA-PET for surgical guidance is warranted in the unfavorable intermediate-risk or worse populations. CLINICALTRIALS.GOV IDENTIFIER: NCT04936334.


Subject(s)
Prostatectomy , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/surgery , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Prospective Studies , Middle Aged , Prostatectomy/methods , Aged , Multiparametric Magnetic Resonance Imaging , Positron Emission Tomography Computed Tomography/methods , Predictive Value of Tests , Magnetic Resonance Imaging/methods , Neoplasm Invasiveness/diagnostic imaging , Gallium Radioisotopes , Prostate/diagnostic imaging , Prostate/surgery , Prostate/innervation , Prostate/pathology , Gallium Isotopes
2.
IEEE Trans Med Imaging ; 43(7): 2411-2419, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38306263

ABSTRACT

Positron emission tomography (PET) imaging enables quantitative assessment of tissue physiology. Dynamic pharmacokinetic analysis of PET images requires accurate estimation of the radiotracer plasma input function to derive meaningful parameter estimates, and small discrepancies in parameter estimation can mimic subtle physiologic tissue variation. This study evaluates the impact of input function interpolation method on the accuracy of Patlak kinetic parameter estimation through simulations modeling the pharmacokinetic properties of [68Ga]-PSMA-11. This study evaluated both trained and untrained methods. Although the mean kinetic parameter accuracy was similar across all interpolation models, the trained node weighting interpolation model estimated accurate kinetic parameters with reduced overall variability relative to standard linear interpolation. Trained node weighting interpolation reduced kinetic parameter estimation variance by a magnitude approximating the underlying physiologic differences between normal and diseased prostatic tissue. Overall, this analysis suggests that trained node weighting improves the reliability of Patlak kinetic parameter estimation for [68Ga]-PSMA-11 PET.


Subject(s)
Edetic Acid , Gallium Isotopes , Gallium Radioisotopes , Oligopeptides , Positron-Emission Tomography , Prostatic Neoplasms , Prostatic Neoplasms/diagnostic imaging , Humans , Male , Gallium Radioisotopes/pharmacokinetics , Positron-Emission Tomography/methods , Gallium Isotopes/pharmacokinetics , Oligopeptides/pharmacokinetics , Oligopeptides/chemistry , Edetic Acid/analogs & derivatives , Edetic Acid/pharmacokinetics , Prostate/diagnostic imaging , Image Processing, Computer-Assisted/methods , Radiopharmaceuticals/pharmacokinetics
3.
EJNMMI Res ; 14(1): 6, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38198060

ABSTRACT

BACKGROUND: 68Ga-PSMA-11 positron emission tomography enables the detection of primary, recurrent, and metastatic prostate cancer. Regional radiopharmaceutical uptake is generally evaluated in static images and quantified as standard uptake values (SUVs) for clinical decision-making. However, analysis of dynamic images characterizing both tracer uptake and pharmacokinetics may offer added insights into the underlying tissue pathophysiology. This study was undertaken to evaluate the suitability of various kinetic models for 68Ga-PSMA-11 PET analysis. Twenty-three lesions in 18 patients were included in a retrospective kinetic evaluation of 55-min dynamic 68Ga-PSMA-11 pre-prostatectomy PET scans from patients with biopsy-demonstrated intermediate- to high-risk prostate cancer. Three kinetic models-a reversible one-tissue compartment model, an irreversible two-tissue compartment model, and a reversible two-tissue compartment model, were evaluated for their goodness of fit to lesion and normal reference prostate time-activity curves. Kinetic parameters obtained through graphical analysis and tracer kinetic modeling techniques were compared for reference prostate tissue and lesion regions of interest. RESULTS: Supported by goodness of fit and information loss criteria, the irreversible two-tissue compartment model optimally fit the time-activity curves. Lesions exhibited significant differences in kinetic rate constants (K1, k2, k3, Ki) and semiquantitative measures (SUV and %ID/kg) when compared with reference prostatic tissue. The two-tissue irreversible tracer kinetic model was consistently appropriate across prostatic zones. CONCLUSIONS: An irreversible tracer kinetic model is appropriate for dynamic analysis of 68Ga-PSMA-11 PET images. Kinetic parameters estimated by Patlak graphical analysis or full compartmental analysis can distinguish tumor from normal prostate tissue.

4.
Res Sq ; 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37961116

ABSTRACT

BACKGROUND: 68Ga-PSMA-11 positron emission tomography enables the detection of primary, recurrent, and metastatic prostate cancer. Regional radiopharmaceutical uptake is generally evaluated in static images and quantified as standard uptake values (SUV) for clinical decision-making. However, analysis of dynamic images characterizing both tracer uptake and pharmacokinetics may offer added insights into the underlying tissue pathophysiology. This study was undertaken to evaluate the suitability of various kinetic models for 68Ga-PSMA-11 PET analysis. Twenty-three lesions in 18 patients were included in a retrospective kinetic evaluation of 55-minute dynamic 68Ga-PSMA-11 pre-prostatectomy PET scans from patients with biopsy-demonstrated intermediate to high-risk prostate cancer. A reversible one-tissue compartment model, irreversible two-tissue compartment model, and a reversible two-tissue compartment model were evaluated for their goodness-of-fit to lesion and normal reference prostate time-activity curves. Kinetic parameters obtained through graphical analysis and tracer kinetic modeling techniques were compared for reference prostate tissue and lesion regions of interest. RESULTS: Supported by goodness-of-fit and information loss criteria, the irreversible two-tissue compartment model was selected as optimally fitting the time-activity curves. Lesions exhibited significant differences in kinetic rate constants (K1, k2, k3, Ki) and semiquantitative measures (SUV) when compared with reference prostatic tissue. The two-tissue irreversible tracer kinetic model was consistently appropriate across prostatic zones. CONCLUSIONS: An irreversible tracer kinetic model is appropriate for dynamic analysis of 68Ga-PSMA-11 PET images. Kinetic parameters estimated by Patlak graphical analysis or full compartmental analysis can distinguish tumor from normal prostate tissue.

5.
J Nucl Med ; 64(7): 1087-1092, 2023 07.
Article in English | MEDLINE | ID: mdl-37116915

ABSTRACT

Conventional MRI has important limitations when assessing for progression of disease (POD) versus treatment-related changes (TRC) in patients with malignant brain tumors. We describe the observed impact and pitfalls of implementing 18F-fluoroethyltyrosine (18F-FET) perfusion PET/MRI into routine clinical practice. Methods: Through expanded-access investigational new drug use of 18F-FET, hybrid 18F-FET perfusion PET/MRI was performed during clinical management of 80 patients with World Health Organization central nervous system grade 3 or 4 gliomas or brain metastases of 6 tissue origins for which the prior brain MRI results were ambiguous. The diagnostic performance with 18F-FET PET/MRI was dually evaluated within routine clinical service and for retrospective parametric evaluation. Various 18F-FET perfusion PET/MRI parameters were assessed, and patients were monitored for at least 6 mo to confirm the diagnosis using pathology, imaging, and clinical progress. Results: Hybrid 18F-FET perfusion PET/MRI had high overall accuracy (86%), sensitivity (86%), and specificity (87%) for difficult diagnostic cases for which conventional MRI accuracy was poor (66%). 18F-FET tumor-to-brain ratio static metrics were highly reliable for distinguishing POD from TRC (area under the curve, 0.90). Dynamic tumor-to-brain intercept was more accurate (85%) than SUV slope (73%) or time to peak (73%). Concordant PET/MRI findings were 89% accurate. When PET and MRI conflicted, 18F-FET PET was correct in 12 of 15 cases (80%), whereas MRI was correct in 3 of 15 cases (20%). Clinical management changed after 88% (36/41) of POD diagnoses, whereas management was maintained after 87% (34/39) of TRC diagnoses. Conclusion: Hybrid 18F-FET PET/MRI positively impacted the routine clinical care of challenging malignant brain tumor cases at a U.S. institution. The results add to a growing body of literature that 18F-FET PET complements MRI, even rescuing MRI when it fails.


Subject(s)
Brain Neoplasms , Humans , Retrospective Studies , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/therapy , Disease Progression , Magnetic Resonance Imaging/methods , Perfusion , Positron-Emission Tomography/methods , Tyrosine
6.
Urol Oncol ; 41(1): 48.e1-48.e9, 2023 01.
Article in English | MEDLINE | ID: mdl-36333187

ABSTRACT

BACKGROUND: Incontinence and impotence occur following radical prostatectomy due to injury to nerves and sphincter muscle. Preserving nerves and muscle adjacent to prostate cancer risks positive surgical margins. Advanced imaging with MRI has improved cancer localization but limitations exist. OBJECTIVE: To measure the accuracy for assessing extra-prostatic extension at nerve bundles for 2 PSMA-PET tracers and to compare the PET accuracy to standard-of-care predictors including MRI and biopsy results. MATERIALS AND METHODS: We studied men with PSMA-targeted PET imaging, performed prior to prostatectomy in men largely with intermediate to high-risk prostate cancer, and retrospectively evaluated for assessment of extra-prostatic extension with whole-mount analysis as reference standard. Two different PSMA-PET tracers were included: 68Ga-PSMA-11 and 68Ga-P16-093. Blinded reviews of the PET and MRI scans were performed to assess extra-prostatic extension (EPE). Sensitivity and specificity for extra-prostatic extension were compared using McNemar's Chi2. RESULTS: Pre-operative PSMA-PET imaging was available for 71 patients with either 68Ga-P16-093 (n = 25) or 68Ga-PSMA-11 (n = 46). There were 24 (34%) with pT3a (EPE) and 16 (23%) with pT3b (SVI). EPE Sensitivity (87% vs. 92%), Specificity (77% vs. 76%), and ROC area (0.82 vs. 0.84) were similar between P16-093 and PSMA-11, respectively (P = 0.87). MRI (available in only 45) found high specificity (83%) but low sensitivity (60%) for EPE when using a published grading system. MRI sensitivity was significantly lower than the PSMA-PET (60% vs. 90%, P = 0.02), but similar to PET when using a >5 mm capsular contact (76% vs. 90%, P = 0.38). A treatment change to "nerve sparing" was recommended in 21 of 71 (30%) patients based on PSMA-PET imaging. CONCLUSIONS: Presurgical PSMA-PET appeared useful as a tool for surgical planning, changing treatment plans in men with ≥4+3 or multi-core 3+4 prostate cancer resulting in preservation of nerve-bundles.


Subject(s)
Gallium Radioisotopes , Prostatic Neoplasms , Male , Humans , Retrospective Studies , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/surgery , Prostatic Neoplasms/pathology , Prostatectomy , Positron-Emission Tomography/methods
7.
Front Oncol ; 12: 939260, 2022.
Article in English | MEDLINE | ID: mdl-36483050

ABSTRACT

Many drugs that show potential in animal models of glioblastoma (GBM) fail to translate to the clinic, contributing to a paucity of new therapeutic options. In addition, animal model development often includes histologic assessment, but multiparametric/multimodality imaging is rarely included despite increasing utilization in patient cancer management. This study developed an intracranial recurrent, drug-resistant, human-derived glioblastoma tumor in Sprague-Dawley Rag2-Rag2 tm1Hera knockout rat and was characterized both histologically and using multiparametric/multimodality neuroimaging. Hybrid 18F-fluoroethyltyrosine positron emission tomography and magnetic resonance imaging, including chemical exchange saturation transfer (18F-FET PET/CEST MRI), was performed for full tumor viability determination and characterization. Histological analysis demonstrated human-like GBM features of the intracranially implanted tumor, with rapid tumor cell proliferation (Ki67 positivity: 30.5 ± 7.8%) and neovascular heterogeneity (von Willebrand factor VIII:1.8 to 5.0% positivity). Early serial MRI followed by simultaneous 18F-FET PET/CEST MRI demonstrated consistent, predictable tumor growth, with exponential tumor growth most evident between days 35 and 49 post-implantation. In a second, larger cohort of rats, 18F-FET PET/CEST MRI was performed in mature tumors (day 49 post-implantation) for biomarker determination, followed by evaluation of single and combination therapy as part of the model development and validation. The mean percentage of the injected dose per mL of 18F-FET PET correlated with the mean %CEST (r = 0.67, P < 0.05), but there was also a qualitative difference in hot spot location within the tumor, indicating complementary information regarding the tumor cell demand for amino acids and tumor intracellular mobile phase protein levels. Finally, the use of this glioblastoma animal model for therapy assessment was validated by its increased overall survival after treatment with combination therapy (temozolomide and idasanutlin) (P < 0.001). Our findings hold promise for a more accurate tumor viability determination and novel therapy assessment in vivo in a recently developed, reproducible, intracranial, PDX GBM.

8.
Methods Mol Biol ; 2393: 751-771, 2022.
Article in English | MEDLINE | ID: mdl-34837210

ABSTRACT

Traditional quantitative perfusion imaging methods require complex data acquisition and analysis strategies; typically require ancillary arterial blood sampling for measurement of input functions; are limited to single organ or tissue regions in an imaging session; and because of their complexity, are not well suited for routine clinical implementation in a standardized fashion that can be readily repeated across diverse clinical sites. The whole-body perfusion method described in this chapter has the advantages of on-demand radiotracer production; simple tissue pharmacokinetics enabling standardized estimation of perfusion; short-lived radionuclides, facilitating repeat or combination imaging procedures; and scalability to support widespread clinical implementation. This method leverages the unique physiological characteristics of radiolabeled copper(II) bis(thiosemicarbazone) complexes and the detection sensitivity of positron emission tomography (PET) to produce quantitatively accurate whole-body perfusion images. This chapter describes the synthesis of ethylglyoxal bis(thosemicarbazonato)copper(II) labeled with copper-62 ([62Cu]Cu-ETS), its unique physiological characteristics, a simple tracer kinetic model for estimation of perfusion using image-derived input functions, and validation of the method against a reference standard perfusion tracer. A detailed description of the methods is provided to facilitate implementation of the perfusion imaging method in PET imaging facilities.


Subject(s)
Positron-Emission Tomography , Copper , Perfusion , Perfusion Imaging , Thiosemicarbazones
9.
Stem Cell Rev Rep ; 17(4): 1083-1090, 2021 08.
Article in English | MEDLINE | ID: mdl-34255283

ABSTRACT

We wish to suggest the possibility there is a link between the brain and hematopoiesis in the bone marrow and that in the future it may be possible to use such information for better understanding of the regulation of hematopoiesis, and for efficacious treatment of hematopoietic disorders.


Subject(s)
Bone Marrow , Brain , Hematopoiesis , Bone Marrow/physiology , Brain/physiology , Humans
10.
Curr Oncol Rep ; 23(3): 34, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33599882

ABSTRACT

PURPOSE OF REVIEW: This review will explore the latest in advanced imaging techniques, with a focus on the complementary nature of multiparametric, multimodality imaging using magnetic resonance imaging (MRI) and positron emission tomography (PET). RECENT FINDINGS: Advanced MRI techniques including perfusion-weighted imaging (PWI), MR spectroscopy (MRS), diffusion-weighted imaging (DWI), and MR chemical exchange saturation transfer (CEST) offer significant advantages over conventional MR imaging when evaluating tumor extent, predicting grade, and assessing treatment response. PET performed in addition to advanced MRI provides complementary information regarding tumor metabolic properties, particularly when performed simultaneously. 18F-fluoroethyltyrosine (FET) PET improves the specificity of tumor diagnosis and evaluation of post-treatment changes. Incorporation of radiogenomics and machine learning methods further improve advanced imaging. The complementary nature of combining advanced imaging techniques across modalities for brain tumor imaging and incorporating technologies such as radiogenomics has the potential to reshape the landscape in neuro-oncology.


Subject(s)
Brain Neoplasms/diagnostic imaging , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods , Brain Neoplasms/pathology , Diffusion Magnetic Resonance Imaging , Humans
11.
Mol Imaging Biol ; 22(3): 752-763, 2020 06.
Article in English | MEDLINE | ID: mdl-31429050

ABSTRACT

PURPOSE: This study was undertaken to evaluate radiation dosimetry for the prostate-specific membrane antigen targeted [68Ga]Ga-P16-093 radiopharmaceutical, and to initially assess agent performance in positron emission tomography (PET) detection of the site of disease in prostate cancer patients presenting with biochemical recurrence. PROCEDURES: Under IND 133,222 and an IRB-approved research protocol, we evaluated the biodistribution and pharmacokinetics of [68Ga]Ga-P16-093 with serial PET imaging following intravenous administration to ten prostate cancer patients with biochemical recurrence. The recruited subjects were all patients in whom a recent [68Ga]Ga-PSMA-11 PET/X-ray computed tomography (CT) exam had been independently performed under IND 131,806 to assist in decision-making with regard to their clinical care. Voided urine was collected from each subject at ~ 60 min and ~ 140 min post-[68Ga]Ga-P16-093 injection and assayed for Ga-68 content. Following image segmentation to extract tissue time-activity curves and corresponding cumulated activity values, radiation dosimetry estimates were calculated using IDAC Dose 2.1. The prior [68Ga]Ga-PSMA-11 PET/CT exam (whole-body PET imaging at 60 min post-injection, performed with contrast-enhanced diagnostic CT) served as a reference scan for comparison to the [68Ga]Ga-P16-093 findings. RESULTS: [68Ga]Ga-P16-093 PET images at 60 min post-injection provided diagnostic information that appeared equivalent to the subject's prior [68Ga]Ga-PSMA-11 scan. With both radiopharmaceuticals, sites of tumor recurrence were found in eight of the ten patients, identifying 16 lesions. The site of recurrence was not detected with either agent for the other two subjects. Bladder activity was consistently lower with [68Ga]Ga-P16-093 than [68Ga]Ga-PSMA-11. The kidneys, spleen, salivary glands, and liver receive the highest radiation exposure from [68Ga]Ga-P16-093, with estimated doses of 1.7 × 10-1, 6.7 × 10-2, 6.5 × 10-2, and 5.6 × 10-2 mGy/MBq, respectively. The corresponding effective dose from [68Ga]Ga-P16-093 is 2.3 × 10-2 mSv/MBq. CONCLUSIONS: [68Ga]Ga-P16-093 provided diagnostic information that appeared equivalent to [68Ga]Ga-PSMA-11 in this limited series of ten prostate cancer patients presenting with biochemical recurrence, with the kidneys found to be the critical organ. Diminished tracer appearance in the urine represents a potential advantage of [68Ga]Ga-P16-093 over [68Ga]Ga-PSMA-11 for detection of lesions in the pelvis.


Subject(s)
Antigens, Surface/metabolism , Edetic Acid/analogs & derivatives , Glutamate Carboxypeptidase II/metabolism , Neoplasm Recurrence, Local/diagnostic imaging , Oligopeptides/pharmacokinetics , Positron-Emission Tomography/methods , Prostatic Neoplasms/diagnostic imaging , Radiopharmaceuticals/pharmacokinetics , Aged , Edetic Acid/chemistry , Edetic Acid/pharmacokinetics , Gallium Isotopes , Gallium Radioisotopes , Humans , Male , Middle Aged , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , Oligopeptides/chemistry , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Radiometry , Radiopharmaceuticals/chemistry , Tissue Distribution
12.
J Urol ; 203(1): 92-99, 2020 01.
Article in English | MEDLINE | ID: mdl-31430234

ABSTRACT

PURPOSE: We evaluated which lesions are detected and missed on [68Ga]Ga-PSMA (prostate specific membrane antigen)-11 positron emission tomography in patients with primary prostate cancer. MATERIALS AND METHODS: Patients undergoing radical prostatectomy were enrolled in this prospective observational study. Patients underwent [68Ga]Ga-PSMA-11 positron emission tomography/computerized tomography or positron emission tomography/magnetic resonance imaging prior to surgery and received a dose of [68Ga]Ga-PSMA-11 intraoperatively for positron emission tomography of extirpated specimens. Whole mount pathology was performed with lesion and intralesion based analysis to determine the characteristics of lesions detected or not detected by PSMA positron emission tomography. Lesion volume was determined by planimetry and clinically significant lesion volume was calculated as lesion volume × fraction pattern 4/5. RESULTS: On whole mount analysis 30 cancerous lesions were found in a total of 15 patients, including 4, 15, 4, 1 and 6 which were Grade Group 1, 2, 3, 4 and 5, respectively. PSMA-positron emission tomography detected 100% of primary/index lesions and 8 of 11 (82%) secondary lesions. All Grade Group 3-5 lesions were detected vs 12 of 15 Grade Group 2 lesions. When comparing Grade Group 2 vs 3-5, lesion size was similar (p=0.48) but the standardized uptake value was lower for Grade Group 2 vs 3-5 (5.3 vs 7.9, p=0.03). The 3 missed lesions showed 10% or less of pattern 4 and a Gleason pattern 4/5 volume of less than 0.1 cm3. CONCLUSIONS: PSMA positron emission tomography detected 100% of primary/index lesions in this study. The 3 missed secondary lesions were small and had a low percent of pattern 4. This argues for further study to better understand what defines clinically significant prostate cancer, which would assist in determining whether small lesions that become challenging to detect by [68Ga]Ga-PSMA-11 positron emission tomography confer a risk to the patient.


Subject(s)
Antigens, Surface/blood , Glutamate Carboxypeptidase II/blood , Magnetic Resonance Imaging/methods , Positron Emission Tomography Computed Tomography/methods , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Gallium Radioisotopes , Humans , Male , Middle Aged , Neoplasm Grading , Prospective Studies , Risk Assessment
13.
Bioorg Med Chem Lett ; 29(12): 1476-1480, 2019 06 15.
Article in English | MEDLINE | ID: mdl-31005444

ABSTRACT

The reference standards halo-GSK1482160 (F-, Br-, and I-) and their corresponding precursors desmethyl-halo-GSK1482160 (F-, Br-, and I-) were synthesized from (S)-1-methyl-5-oxopyrrolidine-2-carboxylic acid or (S)-5-oxopyrrolidine-2-carboxylic acid and 2-halo-3-(trifluoromethyl)benzylamine (F-, Br-, and I-) in one step with 45-93% yields. The target tracers [11C]halo-GSK1482160 (F-, Br-, and I-) were prepared from desmethyl-halo-GSK1482160 (F-, Br-, and I-) with [11C]CH3OTf under basic conditions (NaOH-Na2CO3, solid, w/w 1:2) through N-[11C]methylation and isolated by HPLC combined with SPE in 40-50% decay corrected radiochemical yield. The radiochemical purity was >99%, and the molar activity (AM) at end of bombardment (EOB) was 370-740 GBq/µmol. The potency of halo-GSK1482160 (F-, Br-, and I-) in comparison with GSK1482160 (Cl-) was determined by a radioligand competitive binding assay using [11C]GSK1482160, and the binding affinity Ki values for halo-GSK1482160 (F-, Br-, and I-) and GSK1482160 (Cl-) are 54.2, 2.5, 1.9 and 3.1 nM, respectively.


Subject(s)
Radioligand Assay/methods , Radiopharmaceuticals/chemical synthesis , Humans
14.
Appl Radiat Isot ; 144: 10-18, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30476885

ABSTRACT

The overexpression of P2X7R is associated with neuroinflammation and plays an important role in various neurodegenerative diseases. The [18F]fluoropropyl derivative of GSK1482160, [18F]IUR-1602, has been first prepared and examined as a new potential P2X7R radioligand. The reference standard IUR-1602 was synthesized from tert-butyl (S)-5-oxopyrrolidine-2-carboxylate, fluoropropylbromide, and 2-chloro-3-(trifluoromethyl)benzylamine with overall chemical yield 13% in three steps. The target tracer [18F]IUR-1602 was synthesized from desmethyl-GSK1482160 with 3-[18F]fluoropropyl tosylate, prepared from propane-1,3-diyl bis(4-methylbenzenesulfonate) and K[18F]F/Kryptofix2.2.2, in two steps and isolated by HPLC combined with SPE in 2-7% decay corrected radiochemical yield. The radiochemical purity was >99%, and the molar activity at end of bombardment (EOB) was 74-370 GBq/µmol. The potency of IUR-1602 in comparison with GSK1482160 was determined by a radioligand competitive binding assay using [11C]GSK1482160, and the binding affinity Ki values for IUR-1602 and GSK1482160 are 23.6 and 3.07 nM, respectively. The initial in vitro evaluation results, 8-fold less potency of [18F]IUR-1602 compared to [11C]GSK1482160, prevent further in vivo evaluation of [18F]IUR-1602 in animals and human.

15.
J Clin Endocrinol Metab ; 103(9): 3456-3465, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30020461

ABSTRACT

Context: It is unclear if effects of glucagon-like peptide-1 (GLP-1) and clinically available GLP-1 agonists on the heart occur at clinical doses in humans, possibly contributing to reduced cardiovascular disease risk. Objective: To determine whether liraglutide, at clinical dosing, augments myocardial glucose uptake (MGU) alone or combined with insulin compared with insulin alone in metformin-treated type 2 diabetes mellitus (T2D). Design: In a randomized clinical trial of patients with T2D treated with metformin plus oral agents or basal insulin, myocardial fuel use was compared after 3 months of treatment with insulin detemir, liraglutide, or combination detemir plus liraglutide added to background metformin. Main Outcome Measures: Myocardial blood flow (MBF), fuel selection, and rates of fuel use were evaluated using positron emission tomography, powered to demonstrate large effects. Results: MBF was greater in the insulin-treated groups [median (25th, 75th percentile): detemir, 0.64 mL/g/min (0.50, 0.69); liraglutide, 0.52 mL/g/min (0.46, 0.58); detemir plus liraglutide, 0.75 mL/g/min (0.55, 0.77); P = 0.035 comparing three groups, P = 0.01 comparing detemir groups to liraglutide alone]. There were no evident differences among groups in MGU [detemir, 0.040 µmol/g/min (0.013, 0.049); liraglutide, 0.055 µmol/g/min (0.019, 0.105); detemir plus liraglutide, 0.037 µmol/g/min (0.009, 0.046); P = 0.68 comparing three groups]. There were no treatment-group differences in measures of myocardial fatty acid uptake or handling, and no differences in total oxidation rate. Conclusion: These observations argue against large effects of GLP-1 agonists on myocardial fuel metabolism as mediators of beneficial treatment effects on myocardial function and ischemia protection.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/administration & dosage , Insulin Detemir/administration & dosage , Liraglutide/administration & dosage , Myocardium/metabolism , Adult , Blood Glucose/drug effects , Coronary Circulation/drug effects , Diabetes Mellitus, Type 2/physiopathology , Drug Therapy, Combination , Female , Heart/drug effects , Humans , Male , Metformin/administration & dosage , Middle Aged , Treatment Outcome
16.
Bioorg Med Chem Lett ; 28(9): 1603-1609, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29628324

ABSTRACT

The reference standard IUR-1601 ((S)-N-(2-chloro-3-(trifluoromethyl)benzyl)-1-(2-fluoroethyl)-5-oxopyrrolidine-2-carboxamide) was synthesized from tert-butyl (S)-5-oxopyrrolidine-2-carboxylate, fluoroethylbromide, and 2-chloro-3-(trifluoromethyl)benzylamine with overall chemical yield 12% in three steps. The target tracer [18F]IUR-1601 ((S)-N-(2-chloro-3-(trifluoromethyl)benzyl)-1-(2-[18F]fluoroethyl)-5-oxopyrrolidine-2-carboxamide) was synthesized from desmethyl-GSK1482160 with 2-[18F]fluoroethyl tosylate, prepared from 1,2-ethylene glycol-bis-tosylate and K[18F]F/Kryptofix2.2.2, in two steps and isolated by HPLC combined with SPE in 1-3% decay corrected radiochemical yield. The radiochemical purity was >99%, and the molar activity at end of bombardment (EOB) was 74-370 GBq/µmol. The potency of IUR-1601 in comparison with GSK1482160 was determined by a radioligand competitive binding assay using [11C]GSK1482160, and the binding affinity Ki values for IUR-1601 and GSK1482160 are 4.31 and 5.14 nM, respectively.


Subject(s)
Radiopharmaceuticals/chemistry , Receptors, Purinergic P2X7/chemistry , Dose-Response Relationship, Drug , Fluorine Radioisotopes , Humans , Molecular Structure , Radioligand Assay , Radiopharmaceuticals/chemical synthesis , Structure-Activity Relationship
17.
Alzheimers Dement (Amst) ; 9: 57-66, 2017.
Article in English | MEDLINE | ID: mdl-29159268

ABSTRACT

INTRODUCTION: We investigated the association between olfactory identification and Alzheimer's disease biomarkers, including amyloid, tau, and neurodegeneration. METHODS: Thirty-four older adults, including 19 cognitively normal (CN), 10 subjective cognitive decline (SCD), and 5 mild cognitive impairment, underwent amyloid positron emission tomography, magnetic resonance imaging, and the University of Pennsylvania Smell Identification Test (UPSIT). Twenty-six also underwent tau positron emission tomography. Associations between the UPSIT and regionally sampled amyloid, tau, and temporal atrophy were evaluated. Voxel-wise regression models were also utilized. Analyses were conducted with the full sample and only CN/SCD. RESULTS: Lower UPSIT scores were associated with increased temporal and parietal tau burden in regional and voxel-wise analyses in the full sample and in CN and SCD only. Temporal lobe atrophy was associated with lower UPSIT score. Amyloid was not associated with the UPSIT. DISCUSSION: Impairment on the UPSIT may be a good marker for tau and neurodegeneration in preclinical or prodromal Alzheimer's disease.

18.
PLoS One ; 12(8): e0181750, 2017.
Article in English | MEDLINE | ID: mdl-28793321

ABSTRACT

A growing number of studies have investigated combination treatment as an approach to treat bone disease. The goal of this study was to investigate the combination of alendronate and raloxifene with a particular focus on mechanical properties. To achieve this goal we utilized a large animal model, the beagle dog, used previously by our laboratory to study both alendronate and raloxifene monotherapies. Forty-eight skeletally mature female beagles (1-2 years old) received daily oral treatment: saline vehicle (VEH), alendronate (ALN), raloxifene (RAL) or both ALN and RAL. After 6 and 12 months of treatment, all animals underwent assessment of bone material properties using in vivo reference point indentation (RPI) and skeletal hydration using ultra-short echo magnetic resonance imaging (UTE-MRI). End point measures include imaging, histomorphometry, and mechanical properties. Bone formation rate was significantly lower in iliac crest trabecular bone of animals treated with ALN (-71%) and ALN+RAL (-81%) compared to VEH. In vivo assessment of properties by RPI yielded minimal differences between groups while UTE-MRI showed a RAL and RAL+ALN treatment regimens resulted in significantly higher bound water compared to VEH (+23 and +18%, respectively). There was no significant difference among groups for DXA- or CT-based measures lumbar vertebra, or femoral diaphysis. Ribs of RAL-treated animals were smaller and less dense compared to VEH and although mechanical properties were lower the material-level properties were equivalent to normal. In conclusion, we present a suite of data in a beagle dog model treated for one year with clinically-relevant doses of alendronate and raloxifene monotherapies or combination treatment with both agents. Despite the expected effects on bone remodeling, our study did not find the expected benefit of ALN to BMD or structural mechanical properties, and thus the viability of the combination therapy remains unclear.


Subject(s)
Alendronate/pharmacology , Bone Density Conservation Agents/pharmacology , Bone Density/drug effects , Diaphyses/physiology , Femur/physiology , Lumbar Vertebrae/physiology , Raloxifene Hydrochloride/pharmacology , Alendronate/adverse effects , Animals , Bone Remodeling/drug effects , Diaphyses/drug effects , Dogs , Drug Therapy, Combination/adverse effects , Female , Femur/drug effects , Lumbar Vertebrae/drug effects , Magnetic Resonance Imaging , Models, Animal , Osteoporosis/drug therapy , Raloxifene Hydrochloride/adverse effects
19.
Bioorg Med Chem Lett ; 27(12): 2727-2730, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28462835

ABSTRACT

The reference standard methyl (2-amino-5-(benzylthio)thiazolo[4,5-d]pyrimidin-7-yl)-d-leucinate (5) and its precursor 2-amino-5-(benzylthio)thiazolo[4,5-d]pyrimidin-7-yl)-d-leucine (6) were synthesized from 6-amino-2-mercaptopyrimidin-4-ol and BnBr with overall chemical yield 7% in five steps and 4% in six steps, respectively. The target tracer [11C]methyl (2-amino-5-(benzylthio)thiazolo[4,5-d]pyrimidin-7-yl)-d-leucinate ([11C]5) was prepared from the acid precursor with [11C]CH3OTf through O-[11C]methylation and isolated by HPLC combined with SPE in 40-50% radiochemical yield, based on [11C]CO2 and decay corrected to end of bombardment (EOB). The radiochemical purity was >99%, and the specific activity (SA) at EOB was 370-1110GBq/µmol with a total synthesis time of ∼40-min from EOB. The radioligand depletion experiment of [11C]5 did not display specific binding to CX3CR1, and the competitive binding assay of ligand 5 found much lower CX3CR1 binding affinity.


Subject(s)
Leucine/analogs & derivatives , Pyrimidines/pharmacology , Receptors, Chemokine/antagonists & inhibitors , Thiazoles/pharmacology , CX3C Chemokine Receptor 1 , Carbon Isotopes , Dose-Response Relationship, Drug , Humans , Leucine/chemical synthesis , Leucine/chemistry , Leucine/pharmacology , Ligands , Molecular Structure , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Receptors, Chemokine/metabolism , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/chemistry
20.
Bioorg Med Chem ; 25(14): 3835-3844, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28554730

ABSTRACT

P2X4 receptor has become an interesting molecular target for treatment and PET imaging of neuroinflammation and associated brain diseases such as Alzheimer's disease. This study reports the first design, synthesis, radiolabeling and biological evaluation of new candidate PET P2X4 receptor radioligands using 5-BDBD, a specific P2X4 receptor antagonist, as a scaffold. 5-(3-Hydroxyphenyl)-1-[11C]methyl-1,3-dihydro-2H-benzofuro[3,2-e][1,4]diazepin-2-one (N-[11C]Me-5-BDBD analog, [11C]9) and 5-(3-Bromophenyl)-1-[11C]methyl-1,3-dihydro-2H-benzofuro[3,2-e][1,4]diazepin-2-one (N-[11C]Me-5-BDBD, [11C]8c) were prepared from their corresponding desmethylated precursors with [11C]CH3OTf through N-[11C]methylation and isolated by HPLC combined with SPE in 30-50% decay corrected radiochemical yields with 370-1110GBq/µmol specific activity at EOB. 5-(3-[18F]Fluorophenyl)-1,3-dihydro-2H-benzofuro[3,2-e][1,4]diazepin-2-one ([18F]F-5-BDBD, [18F]5a) and 5-(3-(2-[18F]fluoroethoxy)phenyl)-1,3-dihydro-2H-benzofuro[3,2-e][1,4]diazepin-2-one ([18F]FE-5-BDBD, [18F]11) were prepared from their corresponding nitro- and tosylated precursors by nucleophilic substitution with K[18F]F/Kryptofix 2.2.2 and isolated by HPLC-SPE in 5-25% decay corrected radiochemical yields with 111-740GBq/µmol specific activity at EOB. The preliminary biological evaluation of radiolabeled 5-BDBD analogs indicated these new radioligands have similar biological activity with their parent compound 5-BDBD.


Subject(s)
Azirines/chemistry , Dihydropyridines/chemistry , Radiopharmaceuticals/chemical synthesis , Receptors, Purinergic P2X4/metabolism , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Azirines/chemical synthesis , Azirines/metabolism , Binding, Competitive , Carbon Radioisotopes/chemistry , Dihydropyridines/chemical synthesis , Dihydropyridines/metabolism , Fluorine Radioisotopes/chemistry , HEK293 Cells , Humans , Isotope Labeling , Positron-Emission Tomography , Protein Binding , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/metabolism , Receptors, Purinergic P2X4/chemistry , Receptors, Purinergic P2X4/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...