Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Nature ; 633(8028): 198-206, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39232148

ABSTRACT

Oncogenic mutations are abundant in the tissues of healthy individuals, but rarely form tumours1-3. Yet, the underlying protection mechanisms are largely unknown. To resolve these mechanisms in mouse mammary tissue, we use lineage tracing to map the fate of wild-type and Brca1-/-;Trp53-/- cells, and find that both follow a similar pattern of loss and spread within ducts. Clonal analysis reveals that ducts consist of small repetitive units of self-renewing cells that give rise to short-lived descendants. This offers a first layer of protection as any descendants, including oncogenic mutant cells, are constantly lost, thereby limiting the spread of mutations to a single stem cell-descendant unit. Local tissue remodelling during consecutive oestrous cycles leads to the cooperative and stochastic loss and replacement of self-renewing cells. This process provides a second layer of protection, leading to the elimination of most mutant clones while enabling the minority that by chance survive to expand beyond the stem cell-descendant unit. This leads to fields of mutant cells spanning large parts of the epithelial network, predisposing it for transformation. Eventually, clone expansion becomes restrained by the geometry of the ducts, providing a third layer of protection. Together, these mechanisms act to eliminate most cells that acquire somatic mutations at the expense of driving the accelerated expansion of a minority of cells, which can colonize large areas, leading to field cancerization.


Subject(s)
BRCA1 Protein , Cell Lineage , Cell Transformation, Neoplastic , Mammary Glands, Animal , Mutation , Tumor Suppressor Protein p53 , Animals , Mice , Female , Mammary Glands, Animal/cytology , Mammary Glands, Animal/pathology , Mammary Glands, Animal/metabolism , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Cell Lineage/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Cell Transformation, Neoplastic/genetics , Clone Cells/metabolism , Clone Cells/cytology , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Self Renewal/genetics
2.
J Pathol ; 263(3): 360-371, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38779852

ABSTRACT

Mutations are abundantly present in tissues of healthy individuals, including the breast epithelium. Yet it remains unknown whether mutant cells directly induce lesion formation or first spread, leading to a field of mutant cells that is predisposed towards lesion formation. To study the clonal and spatial relationships between morphologically normal breast epithelium adjacent to pre-cancerous lesions, we developed a three-dimensional (3D) imaging pipeline combined with spatially resolved genomics on archival, formalin-fixed breast tissue with the non-obligate breast cancer precursor ductal carcinoma in situ (DCIS). Using this 3D image-guided characterization method, we built high-resolution spatial maps of DNA copy number aberration (CNA) profiles within the DCIS lesion and the surrounding normal mammary ducts. We show that the local heterogeneity within a DCIS lesion is limited. However, by mapping the CNA profiles back onto the 3D reconstructed ductal subtree, we find that in eight out of 16 cases the healthy epithelium adjacent to the DCIS lesions has overlapping structural variations with the CNA profile of the DCIS. Together, our study indicates that pre-malignant breast transformations frequently develop within mutant clonal fields of morphologically normal-looking ducts. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Breast Neoplasms , Carcinoma, Intraductal, Noninfiltrating , DNA Copy Number Variations , Mutation , Humans , Carcinoma, Intraductal, Noninfiltrating/genetics , Carcinoma, Intraductal, Noninfiltrating/pathology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Imaging, Three-Dimensional , Precancerous Conditions/genetics , Precancerous Conditions/pathology , Clone Cells
3.
Breast Cancer Res ; 26(1): 29, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38374113

ABSTRACT

BACKGROUND: Neoadjuvant chemotherapy (NAC) is the standard of care for patients with early-stage triple negative breast cancers (TNBC). However, more than half of TNBC patients do not achieve a pathological complete response (pCR) after NAC, and residual cancer burden (RCB) is associated with dismal long-term prognosis. Understanding the mechanisms underlying differential treatment outcomes is therefore critical to limit RCB and improve NAC efficiency. METHODS: Human TNBC cell lines and patient-derived organoids were used in combination with real-time metabolic assays to evaluate the effect of NAC (paclitaxel and epirubicin) on tumor cell metabolism, in particular glycolysis. Diagnostic biopsies (pre-NAC) from patients with early TNBC were analyzed by bulk RNA-sequencing to evaluate the predictive value of a glycolysis-related gene signature. RESULTS: Paclitaxel induced a consistent metabolic switch to glycolysis, correlated with a reduced mitochondrial oxidative metabolism, in TNBC cells. In pre-NAC diagnostic biopsies from TNBC patients, glycolysis was found to be upregulated in non-responders. Furthermore, glycolysis inhibition greatly improved response to NAC in TNBC organoid models. CONCLUSIONS: Our study pinpoints a metabolic adaptation to glycolysis as a mechanism driving resistance to NAC in TNBC. Our data pave the way for the use of glycolysis-related genes as predictive biomarkers for NAC response, as well as the development of inhibitors to overcome this glycolysis-driven resistance to NAC in human TNBC patients.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Neoadjuvant Therapy , Prognosis , Treatment Outcome , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
4.
STAR Protoc ; 4(3): 102526, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37651235

ABSTRACT

Mouse intraductal modeling enables efficient in vivo propagation of pre-invasive breast cancer lesions and provides a suitable micro-environment for creating patient-derived tumor xenograft models of estrogen-receptor-positive breast cancer. Here, we present a protocol for mouse intraductal modeling of primary ductal carcinoma in situ (DCIS). We describe steps for processing primary DCIS tissues and performing intraductal injections. We then detail procedures for processing intraductal lesions for 3D whole-mount imaging or serial transplantation using magnetic bead sorting. For complete details on the use and execution of this protocol, please refer to Hutten et al. (2023).1.


Subject(s)
Breast Neoplasms , Carcinoma, Intraductal, Noninfiltrating , Humans , Mice , Animals , Female , Carcinoma, Intraductal, Noninfiltrating/pathology , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Disease Models, Animal , Tumor Microenvironment
6.
Cancer Cell ; 41(5): 986-1002.e9, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37116492

ABSTRACT

Ductal carcinoma in situ (DCIS) is a non-obligate precursor of invasive breast cancer (IBC). Due to a lack of biomarkers able to distinguish high- from low-risk cases, DCIS is treated similar to early IBC even though the minority of untreated cases eventually become invasive. Here, we characterized 115 patient-derived mouse-intraductal (MIND) DCIS models reflecting the full spectrum of DCIS observed in patients. Utilizing the possibility to follow the natural progression of DCIS combined with omics and imaging data, we reveal multiple prognostic factors for high-risk DCIS including high grade, HER2 amplification, expansive 3D growth, and high burden of copy number aberrations. In addition, sequential transplantation of xenografts showed minimal phenotypic and genotypic changes over time, indicating that invasive behavior is an intrinsic phenotype of DCIS and supporting a multiclonal evolution model. Moreover, this study provides a collection of 19 distributable DCIS-MIND models spanning all molecular subtypes.


Subject(s)
Breast Neoplasms , Carcinoma, Intraductal, Noninfiltrating , Humans , Animals , Mice , Female , Carcinoma, Intraductal, Noninfiltrating/genetics , Carcinoma, Intraductal, Noninfiltrating/pathology , Biological Specimen Banks , Heterografts , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Risk Factors , Disease Progression
7.
PLoS One ; 12(1): e0169905, 2017.
Article in English | MEDLINE | ID: mdl-28114413

ABSTRACT

Brassinosteroids (BRs) are plant hormones that are perceived at the plasma membrane (PM) by the ligand binding receptor BRASSINOSTEROID-INSENSITIVE1 (BRI1) and the co-receptor SOMATIC EMBRYOGENESIS RECEPTOR LIKE KINASE 3/BRI1 ASSOCIATED KINASE 1 (SERK3/BAK1). To visualize BRI1-GFP and SERK3/BAK1-mCherry in the plane of the PM, variable-angle epifluorescence microscopy (VAEM) was employed, which allows selective illumination of a thin surface layer. VAEM revealed an inhomogeneous distribution of BRI1-GFP and SERK3/BAK1-mCherry at the PM, which we attribute to the presence of distinct nanoclusters. Neither the BRI1 nor the SERK3/BAK1 nanocluster density is affected by depletion of endogenous ligands or application of exogenous ligands. To reveal interacting populations of receptor complexes, we utilized selective-surface observation-fluorescence lifetime imaging microscopy (SSO-FLIM) for the detection of Förster resonance energy transfer (FRET). Using this approach, we observed hetero-oligomerisation of BRI1 and SERK3 in the nanoclusters, which did not change upon depletion of endogenous ligand or signal activation. Upon ligand application, however, the number of BRI1-SERK3 /BAK1 hetero-oligomers was reduced, possibly due to endocytosis of active signalling units of BRI1-SERK3/BAK1 residing in the PM. We propose that formation of nanoclusters in the plant PM is subjected to biophysical restraints, while the stoichiometry of receptors inside these nanoclusters is variable and important for signal transduction.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Nanostructures , Plant Roots/metabolism , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Fluorescence Resonance Energy Transfer
SELECTION OF CITATIONS
SEARCH DETAIL