Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Anal Methods ; 16(26): 4322-4332, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38888243

ABSTRACT

Microdialysis is an important technique for in vivo sampling of tissue's biochemical composition. Understanding the factors that affect the performance of the microdialysis probes and developing methods for sample analysis are crucial for obtaining reliable results. In this work, we used experimental and numerical procedures to study the performance of microdialysis probes having different configurations, membrane materials and dimensions. For alcohol research, it is important to understand the dynamics of ethanol metabolism, particularly in the brain and in other organs, and to simultaneously measure the concentrations of ethanol and its metabolites - acetaldehyde and acetate. Our work provides a comprehensive characterization of three microdialysis probes, in terms of recovery rates and backpressure, allowing for interpretation and optimization of experimental procedures. In vivo experiments were performed to measure the time course concentration of ethanol, acetaldehyde, and acetate in the rat brain dialysate. Additionally, the combination of in vitro experimental results with numerical simulations enabled us to calculate diffusion coefficients of molecules in the microdialysis membranes and study the extent of the depletion effect caused by continuous microdialysis sampling, thus providing additional insights for probe selection and data interpretation.


Subject(s)
Brain , Ethanol , Microdialysis , Microdialysis/methods , Ethanol/metabolism , Ethanol/analysis , Ethanol/pharmacokinetics , Animals , Rats , Brain/metabolism , Acetaldehyde/analysis , Acetaldehyde/metabolism , Male , Acetates/metabolism , Acetates/pharmacokinetics
2.
Brain Spine ; 3: 102686, 2023.
Article in English | MEDLINE | ID: mdl-38021004

ABSTRACT

Introduction: Complex metabolic disruption is a major aspect of the pathophysiology of traumatic brain injury (TBI). Pyruvate is an intermediate in glucose metabolism and considered one of the most clinically informative metabolites during neurocritical care of TBI patients, especially in deducing the lactate/pyruvate ratio (LPR) - a widely-used metric for probing the brain's metabolic redox state. LPR is conventionally measured offline on a bedside analyzer, on hourly accumulations of brain microdialysate. However, there is increasing interest within the field to quantify microdialysate pyruvate and LPR continuously in near-real-time within its pathophysiological range. We have previously measured pure standard pyruvate in-vitro using mid-infrared transmission, employing a commercially available external cavity-quantum cascade laser (EC-QCL) and a microfluidic flow cell and reported a limit of detection (LOD) of 0.1 mM. Research question: The present study was to test whether the current commercially available state-of-the-art mid-infrared transmission system, can detect pyruvate levels lower than previously reported. Materials and methods: We measured pyruvate in perfusion fluid on the mid-infrared transmission system also equipped with an EC-QCL and microfluidic flow cells, tested at three pathlengths. Results: We characterised the system to extract its relevant figures-of-merit and report the LOD of 0.07 mM. Discussion and conclusion: The reported LOD of 0.07 mM represents a clinically recognised threshold and is the lowest value reported in the field for a sensor that can be coupled to microdialysis. While work is ongoing for a definitive evaluation of the system to measuring pyruvate, these preliminary results set a good benchmark and reference against which future developments can be examined.

3.
Article in English | MEDLINE | ID: mdl-37051259

ABSTRACT

Continuous measurement of the concentrations of ethanol and its metabolites, acetaldehyde and acetic acid, in vivo is important for the alcohol research community. Most studies only measure ethanol because accurate measurement of all three compounds is challenging. Measurement inside tissue/brain is done using a microdialysis technique, followed by off-line analysis using gas chromatography (GC). To realize simultaneous measurement of ethanol and its metabolites, one can take advantage of infrared (IR) spectroscopy as a rapid and reagent-free method. Here we report a feasibility study of using IR spectroscopy to simultaneously measure ethanol, acetaldehyde and acetic acid in aqueous solution. Different concentrations in transmission mode at different optical pathlengths and using attenuated total reflectance (ATR) were measured. In vitro microdialysis was performed on the mixture of the three compounds, and the collected sample was measured using IR to demonstrate the capability of quantifying the concentrations of the three analytes simultaneously. Lastly, to overcome the limitations of the microdialysis technique, direct measurement using evanescent-field IR spectroscopy can be a potential alternative. A hydrophobic polymer coating that adsorbs ethanol and excludes water, could improve sensitivity. Sorption kinetics in polymethyl methacrylate (PMMA) and polydimethylsiloxane (PDMS) coatings on an ATR crystal were measured. Both polymers demonstrate preferential adsorption of ethanol over water.

4.
ACS Omega ; 7(47): 43130-43138, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36467938

ABSTRACT

Adsorption-desorption behaviors of polar and nonpolar volatile organic compounds (VOCs), namely, isopropanol and nonane, on mesoporous silica were studied using optical reflectance spectroscopy. Mesoporous silica was fabricated via electrochemical etching of silicon and subsequent thermal oxidation, resulting in an average pore diameter of 11 nm and a surface area of approximately 493 m2/g. The optical thickness of the porous layer, which is proportional to the number of adsorbed molecules, was measured using visible light reflectance interferometry. In situ adsorption and desorption kinetics were obtained for various mesoporous silica temperatures ranging from 10 to 70 °C. Sorption as a function of temperature was acquired for isopropanol and nonane. Sequential adsorption measurements of isopropanol and nonane were performed and showed that, when one VOC is introduced immediately following another, the second VOC displaces the first one regardless of the VOC's polarity and the strength of its interaction with the silica surface.

5.
Biochem Biophys Res Commun ; 637: 136-143, 2022 12 31.
Article in English | MEDLINE | ID: mdl-36399799

ABSTRACT

Although microdialysis is a common in vivo sampling technique, a detailed characterization of the performance of a microdialysis probe used for sampling ethanol molecules has not been conducted. In this work, experimental and computational investigations were carried out to quantitatively study ethanol diffusion characteristics for home-made and commercially available probes. Probe efficiency, i.e. recovery rate (defined as the ethanol concentration in the dialysate to that in the external medium surrounding the probe) was used to characterize the performance. The recovery rate was measured at different perfusion flow rates (0.1, 0.2, 0.5, 1, 1.5, 2 µL/min) and external ethanol concentrations (1, 2.5, 5, 10, 20 mM) with controlled environmental conditions. Effect of temperature was also investigated at 19, 37 and 47 °C. The results show that reducing the flow rate from 2 to 0.1 µL/min at least triples the recovery rate for the home-made probes, and it remains nearly unchanged when varying external ethanol concentration. The performance for two commercial microdialysis probes with different membrane materials and configurations were also determined and have similar recovery rates. Through computational modeling, the diffusion coefficient of ethanol in the semipermeable membrane of the home-made probe was determined by fitting the experimental data, and it was found to be 9 × 1011 m2/s (R2 > 0.99). In addition, the depletion effect over time at different flow rates along with estimated in vivo ethanol clearance were simulated numerically, showing that the depletion region shrinks significantly when the flow rate is below 1 µL/min. The results provide better understanding of the diffusion characteristics of the microdialysis probe when used for sampling ethanol which can be used for better interpretation of in vivo measurements and for microdialysis probe optimization.


Subject(s)
Ethanol , Microdialysis , Perfusion , Computer Simulation , Diffusion
6.
Sens Diagn ; 1(4): 614-626, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35923773

ABSTRACT

Potassium is an important bodily electrolyte which is kept within tight limits in health. Many medical conditions as well as commonly-used drugs either raise or lower blood potassium levels, which can be dangerous or even fatal. For at-risk patients, frequent monitoring of potassium can improve safety and lifestyle, but conventional venous blood draws are inconvenient, don't provide a timely result and may be inaccurate. This review summarises current solutions and recent developments in point-of-care and self-testing potassium measurement technologies, which include devices for measurement of potassium in venous blood, devices for home blood collection and remote measurement, devices for rapid home measurement of potassium, wearable sensors for potassium in interstitial fluid, in sweat, in urine, as well as non-invasive potassium detection. We discuss the practical and clinical applicability of these technologies and provide future outlooks.

7.
Metabolites ; 12(5)2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35629896

ABSTRACT

In a traumatically injured brain, the cerebral microdialysis technique allows continuous sampling of fluid from the brain's extracellular space. The retrieved brain fluid contains useful metabolites that indicate the brain's energy state. Assessment of these metabolites along with other parameters, such as intracranial pressure, brain tissue oxygenation, and cerebral perfusion pressure, may help inform clinical decision making, guide medical treatments, and aid in the prognostication of patient outcomes. Currently, brain metabolites are assayed on bedside analysers and results can only be achieved hourly. This is a major drawback because critical information within each hour is lost. To address this, recent advances have focussed on developing biosensing techniques for integration with microdialysis to achieve continuous online monitoring. In this review, we discuss progress in this field, focusing on various types of sensing devices and their ability to quantify specific cerebral metabolites at clinically relevant concentrations. Important points that require further investigation are highlighted, and comments on future perspectives are provided.

8.
Chem Rev ; 122(9): 8053-8125, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35349271

ABSTRACT

Alkali metal batteries based on lithium, sodium, and potassium anodes and sulfur-based cathodes are regarded as key for next-generation energy storage due to their high theoretical energy and potential cost effectiveness. However, metal-sulfur batteries remain challenged by several factors, including polysulfides' (PSs) dissolution, sluggish sulfur redox kinetics at the cathode, and metallic dendrite growth at the anode. Functional separators and interlayers are an innovative approach to remedying these drawbacks. Here we critically review the state-of-the-art in separators/interlayers for cathode and anode protection, covering the Li-S and the emerging Na-S and K-S systems. The approaches for improving electrochemical performance may be categorized as one or a combination of the following: Immobilization of polysulfides (cathode); catalyzing sulfur redox kinetics (cathode); introduction of protective layers to serve as an artificial solid electrolyte interphase (SEI) (anode); and combined improvement in electrolyte wetting and homogenization of ion flux (anode and cathode). It is demonstrated that while the advances in Li-S are relatively mature, less progress has been made with Na-S and K-S due to the more challenging redox chemistry at the cathode and increased electrochemical instability at the anode. Throughout these sections there is a complementary discussion of functional separators for emerging alkali metal systems based on metal-selenium and the metal-selenium sulfide. The focus then shifts to interlayers and artificial SEI/cathode electrolyte interphase (CEI) layers employed to stabilize solid-state electrolytes (SSEs) in metal-sulfur solid-state batteries (SSBs). The discussion of SSEs focuses on inorganic electrolytes based on Li- and Na-based oxides and sulfides but also touches on some hybrid systems with an inorganic matrix and a minority polymer phase. The review then moves to practical considerations for functional separators, including scaleup issues and Li-S technoeconomics. The review concludes with an outlook section, where we discuss emerging mechanics, spectroscopy, and advanced electron microscopy (e.g. cryo-transmission electron microscopy (cryo-TEM) and cryo-focused ion beam (cryo-FIB))-based approaches for analysis of functional separator structure-battery electrochemical performance interrelations. Throughout the review we identify the outstanding open scientific and technological questions while providing recommendations for future research topics.

9.
ACS Sens ; 7(1): 304-311, 2022 01 28.
Article in English | MEDLINE | ID: mdl-34958564

ABSTRACT

The selective detection of individual hazardous volatile organic compounds (VOCs) within a mixture is of great importance in industrial contexts due to environmental and health concerns. Achieving this with inexpensive, portable detectors continues to be a significant challenge. Here, a novel thermal separator system coupled with a photoionization detector has been developed, and its ability to selectively detect the VOCs isopropanol and 1-octene from a mixture of the two has been studied. The system includes a nanoporous silica preconcentrator in conjunction with a commercially available photoionization detector (PID). The PID is a broadband total VOC sensor with little selectivity; however, when used in conjunction with our thermal desorption approach, selective VOC detection within a mixture can be achieved. VOCs are adsorbed in the nanoporous silica over a 5 min period at 5 °C before being desorbed by heating at a fixed rate to 70 °C and detected by the PID. Different VOCs desorb at different times/temperatures, and mathematical analysis of the set of PID responses over time enabled the contributions from isopropanol and 1-octene to be separated. The concentrations of each compound individually could be measured in a mixture with limits of detection less than 10 ppbv and linearity errors less than 1%. Demonstration of a separation of a mixture of chemically similar compounds, benzene and o-xylene, is also provided.


Subject(s)
Nanopores , Volatile Organic Compounds , 2-Propanol/analysis , Chromatography, Gas , Silicon Dioxide , Volatile Organic Compounds/analysis
10.
Adv Mater ; 34(7): e2105855, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34738260

ABSTRACT

This is the first report of a multifunctional separator for potassium-metal batteries (KMBs). Double-coated tape-cast microscale AlF3 on polypropylene (AlF3 @PP) yields state-of-the-art electrochemical performance: symmetric cells are stable after 1000 cycles (2000 h) at 0.5 mA cm-2 and 0.5 mAh cm-2 , with 0.042 V overpotential. Stability is maintained at 5.0 mA cm-2 for 600 cycles (240 h), with 0.138 V overpotential. Postcycled plated surface is dendrite-free, while stripped surface contains smooth solid electrolyte interphase (SEI). Conventional PP cells fail rapidly, with dendrites at plating, and "dead metal" and SEI clumps at stripping. Potassium hexacyanoferrate(III) cathode KMBs with AlF3 @PP display enhanced capacity retention (91% at 100 cycles vs 58%). AlF3 partially reacts with K to form an artificial SEI containing KF, AlF3 , and Al2 O3 phases. The AlF3 @PP promotes complete electrolyte wetting and enhances uptake, improves ion conductivity, and increases ion transference number. The higher of K+ transference number is ascribed to the strong interaction between AlF3 and FSI- anions, as revealed through 19 F NMR. The enhancement in wetting and performance is general, being demonstrated with ester- and ether-based solvents, with K-, Na-, or Li- salts, and with different commercial separators. In full batteries, AlF3 prevents Fe crossover and cycling-induced cathode pulverization.

11.
Anal Chem ; 93(35): 11929-11936, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34432431

ABSTRACT

The brains of patients suffering from traumatic brain-injury (TBI) undergo dynamic chemical changes in the days following the initial trauma. Accurate and timely monitoring of these changes is of paramount importance for improved patient outcome. Conventional brain-chemistry monitoring is performed off-line by collecting and manually transferring microdialysis samples to an enzymatic colorimetric bedside analyzer every hour, which detects and quantifies the molecules of interest. However, off-line, hourly monitoring means that any subhourly neurochemical changes, which may be detrimental to patients, go unseen and thus untreated. Mid-infrared (mid-IR) spectroscopy allows rapid, reagent-free, molecular fingerprinting of liquid samples, and can be easily integrated with microfluidics. We used mid-IR transmission spectroscopy to analyze glucose, lactate, and pyruvate, three relevant brain metabolites, in the extracellular brain fluid of two TBI patients, sampled via microdialysis. Detection limits of 0.5, 0.2, and 0.1 mM were achieved for pure glucose, lactate, and pyruvate, respectively, in perfusion fluid using an external cavity-quantum cascade laser (EC-QCL) system with an integrated transmission flow-cell. Microdialysates were collected hourly, then pooled (3-4 h), and measured consecutively using the standard ISCUSflex analyzer and the EC-QCL system. There was a strong correlation between the compound concentrations obtained using the conventional bedside analyzer and the acquired mid-IR absorbance spectra, where a partial-least-squares regression model was implemented to compute concentrations. This study demonstrates the potential utility of mid-IR spectroscopy for continuous, automated, reagent-free, and online monitoring of the dynamic chemical changes in TBI patients, allowing a more timely response to adverse brain metabolism and consequently improving patient outcomes.


Subject(s)
Extracellular Fluid , Lasers, Semiconductor , Glucose , Humans , Microdialysis , Spectrophotometry, Infrared
12.
Analyst ; 146(1): 109-117, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33163998

ABSTRACT

Detection and separation of gas-phase volatile organic compounds (VOCs) is of great importance for many applications including air quality monitoring, toxic gas detection and medical diagnostics. A lack of small and low-cost detectors limits the potential applications of VOC gas sensors, especially in the areas of consumer products and the 'Internet of Things'. Most of the commercially available low-cost technologies are either only capable of measuring a single VOC type, or only provide a total VOC concentration, without the ability to provide information on the nature or type of the VOC. We present a new approach for improving the selectivity of VOC detection, based on temporally resolved thermal desorption of VOCs from a nanoporous material, which can be combined with any existing VOC detector. This work uses a nanoporous silica material that adsorbs VOC molecules, which are then thermally desorbed onto a broadband VOC detector. Different VOCs are desorbed at different temperatures depending on their boiling point and affinity to the porous surface. The nanoporous silica is inert; VOC adsorption is proportional to the concentration of VOC in the environment, and is fully reversible. An example of a detection system using a commercial total VOC photoionization detector and a nanoporous silica preconcentrator is demonstrated here for six different VOCs, and shows potential for discrimination between the VOCs.

13.
ACS Omega ; 5(29): 18073-18079, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32743181

ABSTRACT

The detection of trace amounts of explosives in the vapor phase is of great importance. Preconcentration of the analyte is a useful technique to lower the detection limit of existing sensors. A nanoporous silica (pSiO2) substrate was evaluated as a preconcentrator for gas-phase 2,3-dimethyl-2,3-dinitrobutane (DMNB), a volatile detection taggant added by law to plastic explosives. After collection in pSiO2, the DMNB vapor was thermally desorbed at 70 °C into a gas chromatography-mass spectrometry sorbent tube. This was analyzed for the total mass of DMNB collected in pSiO2. The loading time and loading temperature of pSiO2 were varied systematically between 15 and 60 min and 5-20 °C, respectively. The preconcentrator's performance was compared to that of a nonporous substrate of the same material as a control. The collection efficiency of pSiO2 was calculated as approximately 20% of the total DMNB that passed over it in 30 min, at a concentration of 0.5 ppm in N2 carrier gas. It had enhancement factors compared to the nonporous substrate of 12 and 16 for 0.5 and 4.1 ppm DMNB, respectively, under the same conditions. No advantage was found with cooling pSiO2 below room temperature during the loading phase, which removes any need for a cooling system to aid preconcentration. The low desorption temperature of 70 °C is an advantage over other preconcentration systems, although a higher temperature could decrease the desorption time.

14.
RSC Adv ; 9(37): 21186-21191, 2019 Jul 05.
Article in English | MEDLINE | ID: mdl-35521343

ABSTRACT

The increasing awareness of the harsh environmental and health risks associated with air pollution has placed volatile organic compounds (VOCs) sensor technologies in elevated demand. While the currently available VOC-monitoring technologies are either bulky and expensive, or only capable of measuring a total VOC concentration, the selective detection of VOCs in the gas-phase remains a challenge. To overcome this, a novel method and device based on mid-IR evanescent-wave fiber-optic spectroscopy, which enables enhanced detection of VOCs, is hereby proposed. This is achieved by increasing the number of analyte molecules in the proximity of the evanescent field via capillary condensation inside nano-porous microparticles coated on the fiber surface. The nano-porous structure of the coating allows the VOC analytes to rapidly diffuse into the pores and become concentrated at the surface of the fiber, thereby allowing the utilization of highly sensitive evanescent-wave spectroscopy. To ascertain the effectiveness and performance of the sensor, different VOCs are measured, and the enhanced sensitivity is analyzed using a custom-built gas cell. According to the results presented here, our VOC sensor shows a significantly increased sensitivity compared to that of an uncoated fiber.

15.
Opt Express ; 26(12): 15539-15550, 2018 Jun 11.
Article in English | MEDLINE | ID: mdl-30114813

ABSTRACT

Enhancement of sub-wavelength optical fields using sub-micron plasmonic probes has found many applications in chemical, material, biological and medical sciences. The enhancement is via localised surface-plasmon resonance (LSPR) which enables the highly sensitive vibrational-spectroscopy technique of surface-enhanced Raman scattering (SERS). Combining SERS with optical fibres can allow the monitoring of biochemical reactions in situ with high resolution. Here, we study the electromagnetic-field enhancement of a tapered optical fibre-tip coated with gold nanoparticles (AuNPs) using finite-element simulations. We investigate the electric-field enhancement associated with metallic NPs and study the effect of parameters such as tip-aperture radius, cone angle, nanoparticle size and gaps between them. Our study provides an understanding of the design and application of metal-nanoparticle-coated optical-fibre-tip probes for SERS. The approach of using fibre-coupled delivery adds flexibility and simplifies the system requirements in SERS, making it suitable for cellular imaging and mapping bio-interfaces.

16.
Nanoscale ; 10(15): 7138-7146, 2018 Apr 19.
Article in English | MEDLINE | ID: mdl-29616248

ABSTRACT

Surface-enhanced Raman spectroscopy (SERS) is well known for its high sensitivity that emerges due to the plasmonic enhancement of electric fields typically on gold and silver nanostructures. However, difficulties associated with the preparation of nanostructured substrates with uniform and reproducible features limit reliability and quantitation using SERS measurements. In this work we use layer-by-layer (LbL) self-assembly to incorporate multiple functional building blocks of collaborative assemblies of nanoparticles on colloidal spheres to fabricate SERS sensors. Gold nanoparticles (AuNPs) are packaged in discrete layers, effectively 'freezing nano-gaps', on spherical colloidal cores to achieve multifunctionality and reproducible sensing. Coupling between layers tunes the plasmon resonance for optimum SERS signal generation to achieve a 10 nM limit of detection. Significantly, using the layer-by-layer construction, SERS-active AuNP layers are spaced out and thus optically isolated. This uniquely allows the creation of an internal standard within each colloidal sensor to enable highly reproducible self-calibrated sensing. By using 4-mercaptobenzoic acid (4-MBA) as the internal standard adenine concentrations are quantified to an accuracy of 92.6-99.5%. Our versatile approach paves the way for rationally designed yet quantitative colloidal SERS sensors and their use in a variety of sensing applications.

17.
Interface Focus ; 6(4): 20160018, 2016 Aug 06.
Article in English | MEDLINE | ID: mdl-27499844

ABSTRACT

Many countries have a rapidly ageing population, placing strain on health services and creating a growing market for assistive technology for older people. We have, through a student-led, 12-week project for 10 students from a variety of science and engineering backgrounds, developed an integrated sensor system to enable older people, or those at risk, to live independently in their own homes for longer, while providing reassurance for their family and carers. We provide details on the design procedure and performance of our sensor system and the management and execution of a short-term, student-led research project. Detailed information on the design and use of our devices, including a door sensor, power monitor, fall detector, general in-house sensor unit and easy-to-use location-aware communications device, is given, with our open designs being contrasted with closed proprietary systems. A case study is presented for the use of our devices in a real-world context, along with a comparison with commercially available systems. We discuss how the system could lead to improvements in the quality of life of older users and increase the effectiveness of their associated care network. We reflect on how recent developments in open source technology and rapid prototyping increase the scope and potential for the development of powerful sensor systems and, finally, conclude with a student perspective on this team effort and highlight learning outcomes, arguing that open technologies will revolutionize the way in which technology will be deployed in academic research in the future.

18.
J Phys Chem Lett ; 6(12): 2282-6, 2015 Jun 18.
Article in English | MEDLINE | ID: mdl-26266605

ABSTRACT

Nondestructive, noninvasive and accurate measurement of thin film thicknesses on dielectric substrates is challenging. In this work a ruler for measuring thin film thicknesses utilizes the heteronanojunction construct formed between a plasmonic nanoparticle and a high refractive index nonplasmonic substrate. The high near-field sensitivity in the nanojunction renders it suitable for measuring the thickness of intervening dielectric thin films. We demonstrate this by controlling the thickness of dielectric spacer layers created by overgrowing SiO2 thin films on commercially available silicon substrates. While Rayleigh (using dark-field) scattering measurements show that the spectral response is well correlated to the thickness of SiO2 spacer layers the distance-dependence is much steeper with surface-enhanced Raman scattering (SERS). Good agreement between 3D simulations and experimental results confirm the plasmon ruler construct's sensitivity to the dielectric thin film spacing. Thus, we postulate that this single nanoparticle based heteronanojunction configuration can serve as a convenient and simple ruler in metrology of thin films as well as a platform for SERS-based detection even in cases where plasmonically active films are not a suitable substrate.


Subject(s)
Nanoparticles/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Silicon Dioxide/chemistry , Spectrum Analysis, Raman
19.
Analyst ; 138(16): 4574-8, 2013 Aug 21.
Article in English | MEDLINE | ID: mdl-23748709

ABSTRACT

Using the bianalyte method we unambiguously demonstrate that a single gold nanosphere on a metal film junction, in the so-called nanoparticle on a mirror configuration, is capable of single molecule detection with surface-enhanced Raman spectroscopy (SERS). Also this configuration serves as a convenient and highly sensitive SERS sensor for detection of biomolecules. Such simple nano-junction based systems are ideal for chemical and biomedical analysis.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Spectrum Analysis, Raman/methods
20.
Nanotechnology ; 24(3): 035201, 2013 Jan 25.
Article in English | MEDLINE | ID: mdl-23262989

ABSTRACT

In this paper, we study the local-field enhancement in a system of a metallic nanoparticle placed very near to a dielectric substrate. In such systems, intense electric fields are localized in the gap between the particle and the substrate, creating a 'hot-spot' under appropriate excitation conditions. We use finite-element numerical simulations in order to study the field enhancement in this dielectric-metal system. More specifically, we show how the optical properties of the dielectric substrate (n and k) affect the plasmonic field enhancement in the nano-gap. We also analyze the degree of field confinement in the gap and discuss it in the context of utilization for surface-enhanced Raman scattering. We finally show the fields generated by real substrates and compare them to metallic ones.

SELECTION OF CITATIONS
SEARCH DETAIL
...