Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
MAGMA ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758490

ABSTRACT

OBJECT: In a typical MR session, several contrasts are acquired. Due to the sequential nature of the data acquisition process, the patient may experience some discomfort at some point during the session, and start moving. Hence, it is quite common to have MR sessions where some contrasts are well-resolved, while other contrasts exhibit motion artifacts. Instead of repeating the scans that are corrupted by motion, we introduce a reference-guided retrospective motion correction scheme that takes advantage of the motion-free scans, based on a generalized rigid registration routine. MATERIALS AND METHODS: We focus on various existing clinical 3D brain protocols at 1.5 Tesla MRI based on Cartesian sampling. Controlled experiments with three healthy volunteers and three levels of motion are performed. RESULTS: Radiological inspection confirms that the proposed method consistently ameliorates the corrupted scans. Furthermore, for the set of specific motion tests performed in this study, the quality indexes based on PSNR and SSIM shows only a modest decrease in correction quality as a function of motion complexity. DISCUSSION: While the results on controlled experiments are positive, future applications to patient data will ultimately clarify whether the proposed correction scheme satisfies the radiological requirements.

2.
Phys Med Biol ; 68(14)2023 07 05.
Article in English | MEDLINE | ID: mdl-37339638

ABSTRACT

Objective.The high speed of cardiorespiratory motion introduces a unique challenge for cardiac stereotactic radio-ablation (STAR) treatments with the MR-linac. Such treatments require tracking myocardial landmarks with a maximum latency of 100 ms, which includes the acquisition of the required data. The aim of this study is to present a new method that allows to track myocardial landmarks from few readouts of MRI data, thereby achieving a latency sufficient for STAR treatments.Approach.We present a tracking framework that requires only few readouts of k-space data as input, which can be acquired at least an order of magnitude faster than MR-images. Combined with the real-time tracking speed of a probabilistic machine learning framework called Gaussian Processes, this allows to track myocardial landmarks with a sufficiently low latency for cardiac STAR guidance, including both the acquisition of required data, and the tracking inference.Main results.The framework is demonstrated in 2D on a motion phantom, andin vivoon volunteers and a ventricular tachycardia (arrhythmia) patient. Moreover, the feasibility of an extension to 3D was demonstrated byin silico3D experiments with a digital motion phantom. The framework was compared with template matching-a reference, image-based, method-and linear regression methods. Results indicate an order of magnitude lower total latency (<10 ms) for the proposed framework in comparison with alternative methods. The root-mean-square-distances and mean end-point-distance with the reference tracking method was less than 0.8 mm for all experiments, showing excellent (sub-voxel) agreement.Significance.The high accuracy in combination with a total latency of less than 10 ms-including data acquisition and processing-make the proposed method a suitable candidate for tracking during STAR treatments. Additionally, the probabilistic nature of the Gaussian Processes also gives access to real-time prediction uncertainties, which could prove useful for real-time quality assurance during treatments.


Subject(s)
Radiotherapy, Image-Guided , Humans , Radiotherapy, Image-Guided/methods , Heart/diagnostic imaging , Myocardium , Imaging, Three-Dimensional/methods , Motion , Magnetic Resonance Imaging/methods
3.
Med Image Anal ; 88: 102843, 2023 08.
Article in English | MEDLINE | ID: mdl-37245435

ABSTRACT

Respiratory motion during radiotherapy causes uncertainty in the tumor's location, which is typically addressed by an increased radiation area and a decreased dose. As a result, the treatments' efficacy is reduced. The recently proposed hybrid MR-linac scanner holds the promise to efficiently deal with such respiratory motion through real-time adaptive MR-guided radiotherapy (MRgRT). For MRgRT, motion-fields should be estimated from MR-data and the radiotherapy plan should be adapted in real-time according to the estimated motion-fields. All of this should be performed with a total latency of maximally 200 ms, including data acquisition and reconstruction. A measure of confidence in such estimated motion-fields is highly desirable, for instance to ensure the patient's safety in case of unexpected and undesirable motion. In this work, we propose a framework based on Gaussian Processes to infer 3D motion-fields and uncertainty maps in real-time from only three readouts of MR-data. We demonstrated an inference frame rate up to 69 Hz including data acquisition and reconstruction, thereby exploiting the limited amount of required MR-data. Additionally, we designed a rejection criterion based on the motion-field uncertainty maps to demonstrate the framework's potential for quality assurance. The framework was validated in silico and in vivo on healthy volunteer data (n=5) acquired using an MR-linac, thereby taking into account different breathing patterns and controlled bulk motion. Results indicate end-point-errors with a 75th percentile below 1 mm in silico, and a correct detection of erroneous motion estimates with the rejection criterion. Altogether, the results show the potential of the framework for application in real-time MR-guided radiotherapy with an MR-linac.


Subject(s)
Magnetic Resonance Imaging , Radiotherapy, Image-Guided , Humans , Uncertainty , Magnetic Resonance Imaging/methods , Motion , Phantoms, Imaging , Radiotherapy, Image-Guided/methods , Radiotherapy Planning, Computer-Assisted/methods
4.
IEEE Trans Med Imaging ; 41(2): 332-346, 2022 02.
Article in English | MEDLINE | ID: mdl-34520351

ABSTRACT

The MR-Linac is a combination of an MR-scanner and radiotherapy linear accelerator (Linac) which holds the promise to increase the precision of radiotherapy treatments with MR-guided radiotherapy by monitoring motion during radiotherapy with MRI, and adjusting the radiotherapy plan accordingly. Optimal MR-guidance for respiratory motion during radiotherapy requires MR-based 3D motion estimation with a latency of 200-500 ms. Currently this is still challenging since typical methods rely on MR-images, and are therefore limited by the 3D MR-imaging latency. In this work, we present a method to perform non-rigid 3D respiratory motion estimation with 170 ms latency, including both acquisition and reconstruction. The proposed method called real-time low-rank MR-MOTUS reconstructs motion-fields directly from k -space data, and leverages an explicit low-rank decomposition of motion-fields to split the large scale 3D+t motion-field reconstruction problem posed in our previous work into two parts: (I) a medium-scale offline preparation phase and (II) a small-scale online inference phase which exploits the results of the offline phase for real-time computations. The method was validated on free-breathing data of five volunteers, acquired with a 1.5T Elekta Unity MR-Linac. Results show that the reconstructed 3D motion-field are anatomically plausible, highly correlated with a self-navigation motion surrogate ( R=0.975 ±0.0110 ), and can be reconstructed with a total latency of 170 ms that is sufficient for real-time MR-guided abdominal radiotherapy.


Subject(s)
Magnetic Resonance Imaging , Radiotherapy, Image-Guided , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging/methods , Motion , Particle Accelerators , Radiotherapy, Image-Guided/methods , Respiration
5.
Magn Reson Med ; 85(4): 2309-2326, 2021 04.
Article in English | MEDLINE | ID: mdl-33169888

ABSTRACT

PURPOSE: With the recent introduction of the MR-LINAC, an MR-scanner combined with a radiotherapy LINAC, MR-based motion estimation has become of increasing interest to (retrospectively) characterize tumor and organs-at-risk motion during radiotherapy. To this extent, we introduce low-rank MR-MOTUS, a framework to retrospectively reconstruct time-resolved nonrigid 3D+t motion fields from a single low-resolution reference image and prospectively undersampled k-space data acquired during motion. THEORY: Low-rank MR-MOTUS exploits spatiotemporal correlations in internal body motion with a low-rank motion model, and inverts a signal model that relates motion fields directly to a reference image and k-space data. The low-rank model reduces the degrees-of-freedom, memory consumption, and reconstruction times by assuming a factorization of space-time motion fields in spatial and temporal components. METHODS: Low-rank MR-MOTUS was employed to estimate motion in 2D/3D abdominothoracic scans and 3D head scans. Data were acquired using golden-ratio radial readouts. Reconstructed 2D and 3D respiratory motion fields were, respectively, validated against time-resolved and respiratory-resolved image reconstructions, and the head motion against static image reconstructions from fully sampled data acquired right before and right after the motion. RESULTS: Results show that 2D+t respiratory motion can be estimated retrospectively at 40.8 motion fields per second, 3D+t respiratory motion at 7.6 motion fields per second and 3D+t head-neck motion at 9.3 motion fields per second. The validations show good consistency with image reconstructions. CONCLUSIONS: The proposed framework can estimate time-resolved nonrigid 3D motion fields, which allows to characterize drifts and intra and inter-cycle patterns in breathing motion during radiotherapy, and could form the basis for real-time MR-guided radiotherapy.


Subject(s)
Magnetic Resonance Imaging , Respiration , Head , Imaging, Three-Dimensional , Motion , Retrospective Studies
6.
Phys Med Biol ; 65(1): 015004, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31698354

ABSTRACT

Time-resolved motion estimation from MRI data has received an increasing amount of interest due to the advent of the MR-Linac. The combination of an MRI scanner and a linear accelerator enables radiation plan adaptation based on internal organ motion estimated from MRI data. However, time-resolved estimation of this motion from MRI data still remains a challenge. In light of this application, we propose MR-MOTUS, a framework to estimate non-rigid 3D motion from minimal k-space data. MR-MOTUS consists of two main components: (1) a signal model that explicitly relates the k-space signal of a deforming object to non-rigid motion-fields and a reference image, and (2) model-based reconstructions of the non-rigid motion-fields directly from k-space data. Using an a priori available reference image and the fact that internal body motion exhibits a high level of spatial correlation, we represent the motion-fields in a low-dimensional space and reconstruct them from minimal k-space data that can be acquired very rapidly. The signal model is validated through numerical experiments with a digital 3D phantom and motion-fields are reconstructed from retrospectively undersampled in vivo head and abdomen data using various undersampling strategies. A comparison is made with state-of-the-art image registration performed on images reconstructed from the same undersampled data. Results show that MR-MOTUS reconstructs in vivo 3D rigid head motion from 474-fold retrospectively downsampled k-space data, and in vivo non-rigid 3D respiratory motion from 63-fold retrospectively undersampled k-space data. Preliminary results on prospectively undersampled data acquired with a 2D golden angle acquisition during free-breathing demonstrate the practical feasibility of the method.


Subject(s)
Abdomen/diagnostic imaging , Head/diagnostic imaging , Imaging, Three-Dimensional/methods , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Image-Guided/methods , Respiration , Humans , Magnetic Resonance Imaging/methods , Movement , Retrospective Studies
7.
Sci Rep ; 9(1): 8895, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31222055

ABSTRACT

In the radiofrequency (RF) range, the electrical properties of tissues (EPs: conductivity and permittivity) are modulated by the ionic and water content, which change for pathological conditions. Information on tissues EPs can be used e.g. in oncology as a biomarker. The inability of MR-Electrical Properties Tomography techniques (MR-EPT) to accurately reconstruct tissue EPs by relating MR measurements of the transmit RF field to the EPs limits their clinical applicability. Instead of employing electromagnetic models posing strict requirements on the measured MRI quantities, we propose a data driven approach where the electrical properties reconstruction problem can be casted as a supervised deep learning task (DL-EPT). DL-EPT reconstructions for simulations and MR measurements at 3 Tesla on phantoms and human brains using a conditional generative adversarial network demonstrate high quality EPs reconstructions and greatly improved precision compared to conventional MR-EPT. The supervised learning approach leverages the strength of electromagnetic simulations, allowing circumvention of inaccessible MR electromagnetic quantities. Since DL-EPT is more noise-robust than MR-EPT, the requirements for MR acquisitions can be relaxed. This could be a major step forward to turn electrical properties tomography into a reliable biomarker where pathological conditions can be revealed and characterized by abnormalities in tissue electrical properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...