Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38381798

ABSTRACT

Superconducting states onsetting at moderately high temperatures have been observed in epitaxially stabilized RENiO2-based thin films. However, recently, it has also been reported that superconductivity at high temperatures is observed in bulk La3Ni2O7-δ at high pressure, opening further possibilities for study. Here we report the reduction profile of La3Ni2O7 in a stream of 5% H2/Ar gas and the isolation of the metastable intermediate phase La3Ni2O6.45, which is based on Ni2+. Although this reduced phase does not superconduct at ambient or high pressures, it offers insights into the Ni-327 system and encourages future study of nickelates as a function of oxygen content.

2.
Proc Natl Acad Sci U S A ; 120(52): e2310779120, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38113259

ABSTRACT

We present a comprehensive study of the inhomogeneous mixed-valence compound, EuPd3S4, by electrical transport, X-ray diffraction, time-domain 151Eu synchrotron Mössbauer spectroscopy, and X-ray absorption spectroscopy measurements under high pressure. Electrical transport measurements show that the antiferromagnetic ordering temperature, TN, increases rapidly from 2.8 K at ambient pressure to 23.5 K at ~19 GPa and plateaus between ~19 and ~29 GPa after which no anomaly associated with TN is detected. A pressure-induced first-order structural transition from cubic to tetragonal is observed, with a rather broad coexistence region (~20 GPa to ~30 GPa) that corresponds to the TN plateau. Mössbauer spectroscopy measurements show a clear valence transition from approximately 50:50 Eu2+:Eu3+ to fully Eu3+ at ~28 GPa, consistent with the vanishing of the magnetic order at the same pressure. X-ray absorption data show a transition to a fully trivalent state at a similar pressure. Our results show that pressure first greatly enhances TN, most likely via enhanced hybridization between the Eu 4f states and the conduction band, and then, second, causes a structural phase transition that coincides with the conversion of the europium to a fully trivalent state.

3.
Nano Lett ; 21(5): 2191-2198, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33646790

ABSTRACT

Materials with interfaces often exhibit extraordinary phenomena exemplified by rich physics, such as high-temperature superconductivity and enhanced electronic correlations. However, demonstrations of confined interfaces to date have involved intensive effort and fortuity, and no simple path is consistently available. Here, we report the achievement of interfacial superconductivity in the nonsuperconducting parent compounds AEFe2As2, where AE = Ca, Sr, or Ba, by simple subsequent annealing of the as-grown samples in an atmosphere of As, P, or Sb. Our results indicate that the superconductivity originates from electron transfer at the interface of the hybrid van der Waals heterostructures, consistent with the two-dimensional superconducting transition observed. The observations suggest a common origin of interfaces for the nonbulk superconductivity previously reported in the AEFe2As2 compound family and provide insight for the further exploration of interfacial superconductivity.

4.
J Phys Chem Lett ; 11(11): 4385-4391, 2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32406690

ABSTRACT

Intermetallic bismuth-based compounds have attracted great interest as promising candidates for novel topological superconductivity. Among them, CaBi2 is a newly discovered member for which the atomic structure and electronic properties have never been systematically explored. Using low-temperature scanning tunneling microscopy/spectroscopy (STM/S), we systematically characterized the atomic structure and electronic properties of CaBi2(010) thin films grown by molecular beam epitaxy (MBE) and found that their growth follows a Stranski-Krastanov mode. A nonreconstructed IBi layer and a (1 × 2) reconstructed IICa layer were found to be the most common surfaces. Nonreconstructed IIIBi and VCa layers were further exposed with reduced bismuth growth flux. All of these constituent layers exhibit unique features in the STS spectra, indicating that unique electronic properties exist in each specific constituent layer. Our findings provide for deeper understanding of the physical properties of this compound and suggest further studies of the two-dimensional (2D) layered materials family.

5.
Proc Natl Acad Sci U S A ; 116(6): 2004-2008, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30679281

ABSTRACT

By investigating the bulk superconducting state via dc magnetization measurements, we have discovered a common resurgence of the superconducting transition temperatures (Tcs) of the monolayer Bi2Sr2CuO6+δ (Bi2201) and bilayer Bi2Sr2CaCu2O8+δ (Bi2212) to beyond the maximum Tcs (Tc-maxs) predicted by the universal relation between Tc and doping (p) or pressure (P) at higher pressures. The Tc of underdoped Bi2201 initially increases from 9.6 K at ambient to a peak at 23 K at 26 GPa and then drops as expected from the universal Tc-P relation. However, at pressures above 40 GPa, Tc rises rapidly without any sign of saturation up to 30 K at 51 GPa. Similarly, the Tc for the slightly overdoped Bi2212 increases after passing a broad valley between 20 and 36 GPa and reaches 90 K without any sign of saturation at 56 GPa. We have, therefore, attributed this Tc resurgence to a possible pressure-induced electronic transition in the cuprate compounds due to a charge transfer between the Cu 3[Formula: see text] and the O 2p bands projected from a hybrid bonding state, leading to an increase of the density of states at the Fermi level, in agreement with our density functional theory calculations. Similar Tc-P behavior has also been reported in the trilayer Br2Sr2Ca2Cu3O10+δ (Bi2223). These observations suggest that higher Tcs than those previously reported for the layered cuprate high-temperature superconductors can be achieved by breaking away from the universal Tc-P relation through the application of higher pressures.

6.
Science ; 361(6402): 582-585, 2018 08 10.
Article in English | MEDLINE | ID: mdl-29976797

ABSTRACT

Conventional theory predicts that ultrahigh lattice thermal conductivity can only occur in crystals composed of strongly bonded light elements, and that it is limited by anharmonic three-phonon processes. We report experimental evidence that departs from these long-held criteria. We measured a local room-temperature thermal conductivity exceeding 1000 watts per meter-kelvin and an average bulk value reaching 900 watts per meter-kelvin in bulk boron arsenide (BAs) crystals, where boron and arsenic are light and heavy elements, respectively. The high values are consistent with a proposal for phonon-band engineering and can only be explained by higher-order phonon processes. These findings yield insight into the physics of heat conduction in solids and show BAs to be the only known semiconductor with ultrahigh thermal conductivity.

7.
Proc Natl Acad Sci U S A ; 113(46): 12968-12973, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27799564

ABSTRACT

Superconductivity has been reversibly induced/suppressed in undoped CaFe2As2 (Ca122) single crystals through proper thermal treatments, with Tc at ∼25 K at ambient pressure and up to 30 K at 1.7 GPa. We found that Ca122 can be stabilized in two distinct tetragonal (T) phases at room temperature and ambient pressure: PI with a nonmagnetic collapsed tetragonal (cT) phase at low temperature and PII with an antiferromagnetic orthorhombic (O) phase at low temperature, depending on the low-temperature annealing condition. Neither phase at ambient pressure is superconducting down to 2 K. However, systematic annealing for different time periods at 350 °C on the as-synthesized crystals, which were obtained by quenching the crystal ingot from 850 °C, reveals the emergence of superconductivity over a narrow time window. Whereas the onset Tc is insensitive to the anneal time, the superconductive volume fraction evolves with the time in a dome-shaped fashion. Detailed X-ray diffraction profile analyses further reveal mesoscopically stacked layers of the PI and the PII phases. The deduced interface density correlates well with the superconducting volume measured. The transport anomalies of the T-cT transition, which is sensitive to lattice strain, and the T-O transition, which is associated with the spin-density-wave (SDW) transition, are gradually suppressed over the superconductive region, presumably due to the interface interactions between the nonmagnetic metallic cT phase and the antiferromagnetic O phase. The results provide the most direct evidence to date for interface-enhanced superconductivity in undoped Ca122, consistent with the recent theoretical prediction.

SELECTION OF CITATIONS
SEARCH DETAIL