Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Res Sq ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38585865

ABSTRACT

Objective: Sodium glucose cotransporter 2 (SGLT2) inhibitors significantly improve cardiovascular outcomes in diabetic patients; however, the mechanism is unclear. We hypothesized that dapagliflozin improves cardiac outcomes via beneficial effects on systemic and cardiac inflammation and cardiac fibrosis. Research and Design Methods: This randomized placebo-controlled clinical trial enrolled 62 adult patients (mean age 62, 17% female) with type 2 diabetes (T2D) without known heart failure. Subjects were randomized to 12 months of daily 10 mg dapagliflozin or placebo. For all patients, blood/plasma samples and cardiac magnetic resonance imaging (CMRI) were obtained at time of randomization and at the end of 12 months. Systemic inflammation was assessed by plasma IL-1B, TNFα, IL-6 and ketone levels and PBMC mitochondrial respiration, an emerging marker of sterile inflammation. Cardiac fibrosis was assessed by T1 mapping to calculate extracellular volume fraction (ECV); cardiac tissue inflammation was assessed by T2 mapping. Results: Between the baseline and 12-month time point, plasma IL-1B was reduced (-1.8 pg/mL, P=0.003) while ketones were increased (0.26 mM, P=0.0001) in patients randomized to dapagliflozin. PBMC maximal oxygen consumption rate (OCR) decreased over the 12-month period in the placebo group but did not change in patients receiving dapagliflozin (-158.9 pmole/min/106cells, P=0.0497 vs -45.2 pmole/min/106cells, P=0.41), a finding consistent with an anti-inflammatory effect of SGLT2i. ECV and T2 relaxation time did not change in both study groups. Conclusion: This study demonstrates that 12 months of dapagliflozin reduces IL-1B mediated systemic inflammation but affect cardiac fibrosis in T2D. Clinical Trialgov Registration: NCT03782259.

2.
ACS Appl Mater Interfaces ; 16(1): 1187-1197, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38126816

ABSTRACT

The evolving need for all-weather light detection and ranging (LiDAR) sensors and cameras for autonomous vehicles, remote sensing surveillance, and space exploration has spurred the development of transparent heaters. While LiDAR photon sources have shifted from the visible to the near-infrared (NIR) range, the use of transparent conductive oxides (TCOs) for heaters leads to significant optical losses due to their high plasmonic absorption and reflection in the NIR range. Although different TCO compositions can be employed to preserve transparency and electrical conductivity in this range, the choice of dopants, their concentrations, and the underlying mechanisms remain largely unknown. In this study, we present TCOs specifically designed for NIR applications with a focus on identifying new compositions that strike a balance between NIR transparency and electrical conductivity. We present a 4B-6B transition-metal-doped indium oxide thin-film heater that exhibits impressive NIR transmittance (>90%) surpassing that of commonly used indium tin oxide films. By incorporating effective dopants such as titanium, hafnium, and tungsten, we successfully reduced the resistivity and enhanced the electrical conductivity of indium oxide films. To enhance the practical utility of the film, we implemented post-treatments comprising argon plasma treatment and encapsulation with low-molecular-weight poly(dimethylsiloxane), which resulted in significantly improved performance. The optimized film exhibited a sheet resistance of 520 Ω/sq and excellent optical transmittance at 850 nm (89.1%), 905 nm (89.7%), and 1550 nm (92%). Moreover, we successfully integrated defogging and defrosting capabilities into a commercial LiDAR camera and demonstrated its reliable operation in challenging environments.

3.
Adv Mater ; 35(18): e2300437, 2023 May.
Article in English | MEDLINE | ID: mdl-36780270

ABSTRACT

Piezoelectric nanomaterials that can generate reactive oxygen species (ROS) by piezoelectric polarization under an external mechanical force have emerged as an effective platform for cancer therapy. In this study, piezoelectric 2D WS2 nanosheets are functionalized with mitochondria-targeting triphenylphosphonium (TPP) for ultrasound (US)-triggered, mitochondria-targeted piezodynamic cancer therapy. In addition, a glycolysis inhibitor (FX11) that can inhibit cellular energy metabolism is loaded into TPP- and poly(ethylene glycol) (PEG)-conjugated WS2 nanosheet (TPEG-WS2 ) to potentiate its therapeutic efficacy. Upon US irradiation, the sono-excited electrons and holes generated in the WS2 are efficiently separated by piezoelectric polarization, which subsequently promotes the production of ROS. FX11-loaded TPEG-WS2 (FX11@TPEG-WS2 ) selectively accumulates in the mitochondria of human breast cancer cells. In addition, FX11@TPEG-WS2 effectively inhibits the production of adenosine triphosphate . Thus, FX11@TPEG-WS2 exhibits outstanding anticancer effects under US irradiation. An in vivo study using tumor-xenograft mice demonstrates that FX11@TPEG-WS2 effectively accumulated in the tumors. Its tumor accumulation is visualized using in vivo computed tomography . Notably, FX11@TPEG-WS2 with US irradiation remarkably suppresses the tumor growth of mice without systemic toxicity. This study demonstrates that the combination of piezodynamic therapy and energy metabolism-targeted chemotherapy using mitochondria-targeting 2D WS2 is a novel strategy for the selective and effective treatment of tumors.


Subject(s)
Nanostructures , Neoplasms , Humans , Animals , Mice , Reactive Oxygen Species , Mitochondria , Glycolysis , Polyethylene Glycols/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL