Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 10(10)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37892862

ABSTRACT

Blood-brain barrier (BBB) models are important tools for studying CNS drug delivery, brain development, and brain disease. In vitro BBB models have been obtained from animals and immortalized cell lines; however, brain microvascular endothelial cells (BMECs) derived from them have several limitations. Furthermore, obtaining mature brain microvascular endothelial-like cells (BME-like cells) from human pluripotent stem cells (hPSCs) with desirable properties for establishing BBB models has been challenging. Here, we developed an efficient method for differentiating hPSCs into BMECs that are amenable to the development and application of human BBB models. The established conditions provided an environment similar to that occurring during BBB differentiation in the presence of the co-differentiating neural cell population by the modulation of TGF-ß and SHH signaling. The developed BME-like cells showed well-organized tight junctions, appropriate expression of nutrient transporters, and polarized efflux transporter activity. In addition, BME-like cells responded to astrocytes, acquiring substantial barrier properties as measured by transendothelial electrical resistance. Moreover, the BME-like cells exhibited an immune quiescent property of BBB endothelial cells by decreasing the expression of adhesion molecules. Therefore, our novel cellular platform could be useful for drug screening and the development of brain-permeable pharmaceuticals.

2.
Theranostics ; 13(3): 1076-1090, 2023.
Article in English | MEDLINE | ID: mdl-36793871

ABSTRACT

Precise regulation of kinases and phosphatases is crucial for human metabolic homeostasis. This study aimed to investigate the roles and molecular mechanisms of protein tyrosine phosphatase type IVA1 (PTP4A1) in regulating hepatosteatosis and glucose homeostasis. Method: Ptp4a1-/- mice, adeno-associated virus encoding Ptp4a1 under liver-specific promoter, adenovirus encoding Fgf21, and primary hepatocytes were used to evaluate PTP4A1-mediated regulation in the hepatosteatosis and glucose homeostasis. Glucose tolerance test, insulin tolerance test, 2-deoxyglucose uptake assay, and hyperinsulinemic-euglycemic clamp were performed to estimate glucose homeostasis in mice. The staining, including oil red O, hematoxylin & eosin, and BODIPY, and biochemical analysis for hepatic triglycerides were performed to assess hepatic lipids. Luciferase reporter assays, immunoprecipitation, immunoblots, quantitative real-time polymerase chain reaction, and immunohistochemistry staining were conducted to explore the underlying mechanism. Results: Here, we found that deficiency of PTP4A1 aggravated glucose homeostasis and hepatosteatosis in mice fed a high-fat (HF) diet. Increased lipid accumulation in hepatocytes of Ptp4a1-/- mice reduced the level of glucose transporter 2 on the plasma membrane of hepatocytes leading to a diminution of glucose uptake. PTP4A1 prevented hepatosteatosis by activating the transcription factor cyclic adenosine monophosphate-responsive element-binding protein H (CREBH)/fibroblast growth factor 21 (FGF21) axis. Liver-specific PTP4A1 or systemic FGF21 overexpression in Ptp4a1-/- mice fed an HF diet restored the disorder of hepatosteatosis and glucose homeostasis. Finally, liver-specific PTP4A1 expression ameliorated an HF diet-induced hepatosteatosis and hyperglycemia in wild-type mice. Conclusions: Hepatic PTP4A1 is critical for regulating hepatosteatosis and glucose homeostasis by activating the CREBH/FGF21 axis. Our current study provides a novel function of PTP4A1 in metabolic disorders; hence, modulating PTP4A1 may be a potential therapeutic strategy against hepatosteatosis-related diseases.


Subject(s)
Diet, High-Fat , Hyperglycemia , Humans , Animals , Mice , Diet, High-Fat/adverse effects , Liver/metabolism , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Hyperglycemia/metabolism , Protein Tyrosine Phosphatases/metabolism , Glucose/metabolism , Membrane Proteins/metabolism , Cell Cycle Proteins/metabolism
3.
Cardiovasc Res ; 119(5): 1265-1278, 2023 05 22.
Article in English | MEDLINE | ID: mdl-36534975

ABSTRACT

AIMS: The nuclear factor-κB (NF-κB) signalling pathway plays a critical role in the pathogenesis of multiple vascular diseases. However, in endothelial cells (ECs), the molecular mechanisms responsible for the negative regulation of the NF-κB pathway are poorly understood. In this study, we investigated a novel role for protein tyrosine phosphatase type IVA1 (PTP4A1) in NF-κB signalling in ECs. METHODS AND RESULTS: In human tissues, human umbilical artery ECs, and mouse models for loss of function and gain of function of PTP4A1, we conducted histological analysis, immunostaining, laser-captured microdissection assay, lentiviral infection, small interfering RNA transfection, quantitative real-time PCR and reverse transcription-PCR, as well as luciferase reporter gene and chromatin immunoprecipitation assays. Short hairpin RNA-mediated knockdown of PTP4A1 and overexpression of PTP4A1 in ECs indicated that PTP4A1 is critical for inhibiting the expression of cell adhesion molecules (CAMs). PTP4A1 increased the transcriptional activity of upstream stimulatory factor 1 (USF1) by dephosphorylating its S309 residue and subsequently inducing the transcription of tumour necrosis factor-alpha-induced protein 3 (TNFAIP3/A20) and the inhibition of NF-κB activity. Studies on Ptp4a1 knockout or transgenic mice demonstrated that PTP4A1 potently regulates the interleukin 1ß-induced expression of CAMs in vivo. In addition, we verified that PTP4A1 deficiency in apolipoprotein E knockout mice exacerbated high-fat high-cholesterol diet-induced atherogenesis with upregulated expression of CAMs. CONCLUSION: Our data indicate that PTP4A1 is a novel negative regulator of vascular inflammation by inducing USF1/A20 axis-mediated NF-κB inactivation. Therefore, the expression and/or activation of PTP4A1 in ECs might be useful for the treatment of vascular inflammatory diseases.


Subject(s)
Endothelial Cells , NF-kappa B , Vasculitis , Animals , Humans , Mice , Cell Cycle Proteins/metabolism , Endothelial Cells/metabolism , Inflammation/genetics , Inflammation/metabolism , Membrane Proteins/metabolism , NF-kappa B/metabolism , Protein Tyrosine Phosphatases/metabolism , Signal Transduction , Upstream Stimulatory Factors/metabolism , Vasculitis/genetics , Vasculitis/metabolism
4.
Exp Mol Med ; 54(8): 1250-1261, 2022 08.
Article in English | MEDLINE | ID: mdl-36028759

ABSTRACT

Obesity is a growing global epidemic that can cause serious adverse health consequences, including insulin resistance (IR) and nonalcoholic fatty liver disease (NAFLD). Obesity development can be attributed to energy imbalance and metabolic inflexibility. Here, we demonstrated that lack of Kelch-like protein 3 (KLHL3) mitigated the development of obesity, IR, and NAFLD by increasing energy expenditure. KLHL3 mutations in humans cause Gordon's hypertension syndrome; however, the role of KLHL3 in obesity was previously unknown. We examined differences in obesity-related parameters between control and Klhl3-/- mice. A significant decrease in body weight concomitant with fat mass loss and improved IR and NAFLD were observed in Klhl3-/- mice fed a high-fat (HF) diet and aged. KLHL3 deficiency inhibited obesity, IR, and NAFLD by increasing energy expenditure with augmentation of O2 consumption and CO2 production. Delivering dominant-negative (DN) Klhl3 using adeno-associated virus into mice, thereby dominantly expressing DN-KLHL3 in the liver, ameliorated diet-induced obesity, IR, and NAFLD. Finally, adenoviral overexpression of DN-KLHL3, but not wild-type KLHL3, in hepatocytes revealed an energetic phenotype with an increase in the oxygen consumption rate. The present findings demonstrate a novel function of KLHL3 mutation in extrarenal tissues, such as the liver, and may provide a therapeutic target against obesity and obesity-related diseases.


Subject(s)
Adaptor Proteins, Signal Transducing , Energy Metabolism , Insulin Resistance , Microfilament Proteins , Non-alcoholic Fatty Liver Disease , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Diet, High-Fat/adverse effects , Energy Metabolism/genetics , Humans , Insulin Resistance/genetics , Liver/metabolism , Mice , Mice, Inbred C57BL , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/genetics , Obesity/metabolism
5.
FASEB J ; 34(1): 1231-1246, 2020 01.
Article in English | MEDLINE | ID: mdl-31914695

ABSTRACT

Endothelial progenitor cells (EPCs) promote neovascularization and tissue repair by migrating to vascular injury sites; therefore, factors that enhance EPC homing to damaged tissues are of interest. Here, we provide evidence of the prominent role of the Netrin-4 (NTN4)-Unc-5 Netrin receptor B (UNC5B) axis in EPC-specific promotion of ischemic neovascularization. Our results showed that NTN4 promoted the proliferation, chemotactic migration, and paracrine effects of small EPCs (SEPCs) and significantly increased the incorporation of large EPCs (LEPCs) into tubule networks. Additionally, NTN4 prominently augmented neovascularization in mice with hindlimb ischemia by increasing the homing of exogenously transplanted EPCs to the ischemic limb and incorporating EPCs into vessels. Moreover, silencing of UNC5B, an NTN4 receptor, abrogated the NTN4-induced cellular activities of SEPCs in vitro and blood-flow recovery and neovascularization in vivo in ischemic muscle by reducing EPC homing and incorporation. These findings suggest NTN4 as an EPC-based therapy for treating angiogenesis-dependent diseases.


Subject(s)
Endothelial Progenitor Cells/metabolism , Ischemia/metabolism , Muscle, Skeletal/metabolism , Neovascularization, Pathologic/metabolism , Netrin Receptors/metabolism , Netrins/metabolism , Animals , Endothelial Progenitor Cells/pathology , Endothelial Progenitor Cells/transplantation , Gene Silencing , Heterografts , Hindlimb/blood supply , Humans , Ischemia/genetics , Ischemia/pathology , Ischemia/therapy , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Muscle, Skeletal/blood supply , Muscle, Skeletal/pathology , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/therapy , Netrin Receptors/genetics , Netrins/genetics
6.
J Nanobiotechnology ; 17(1): 24, 2019 Feb 05.
Article in English | MEDLINE | ID: mdl-30722792

ABSTRACT

BACKGROUND: Silica nanoparticles (SiNPs) are widely used for biosensing and diagnostics, and for the targeted delivery of therapeutic agents. Safety concerns about the biomedical and clinical applications of SiNPs have been raised, necessitating analysis of the effects of their intrinsic properties, such as sizes, shapes, and surface physicochemical characteristics, on human health to minimize risk in biomedical applications. In particular, SiNP size-associated toxicological effects, and the underlying molecular mechanisms in the vascular endothelium remain unclear. This study aimed to elucidate the detailed mechanisms underlying the cellular response to exposure to trace amounts of SiNPs and to determine applicable size criteria for biomedical application. METHODS: To clarify whether these SiNP-mediated cytotoxicity due to induction of apoptosis or necrosis, human ECs were treated with SiNPs of four different non-overlapping sizes under low serum-containing condition, stained with annexin V and propidium iodide (PI), and subjected to flow cytometric analysis (FACS). Two types of cell death mechanisms were assessed in terms of production of reactive oxygen species (ROS), endoplasmic reticulum (ER) stress induction, and autophagy activity. RESULTS: Spherical SiNPs had a diameter of 21.8 nm; this was further increased to 31.4, 42.9, and 56.7 nm. Hence, we investigated these effects in human endothelial cells (ECs) treated with these nanoparticles under overlap- or agglomerate-free conditions. The 20-nm SiNPs, but not SiNPs of other sizes, significantly induced apoptosis and necrosis. Surprisingly, the two types of cell death occurred independently and through different mechanisms. Apoptotic cell death resulted from ROS-mediated ER stress. Furthermore, autophagy-mediated necrotic cell death was induced through the PI3K/AKT/eNOS signaling axis. Together, the present results indicate that SiNPs within a diameter of < 20-nm pose greater risks to cells in terms of cytotoxic effects. CONCLUSION: These data provide novel insights into the size-dependence of the cytotoxic effects of silica nanoparticles and the underlying molecular mechanisms. The findings are expected to inform the applicable size range of SiNPs to ensure their safety in biomedical and clinical applications.


Subject(s)
Apoptosis/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Nanoparticles/toxicity , Necrosis/pathology , Signal Transduction/drug effects , Silicon Dioxide , Autophagy/drug effects , Cells, Cultured , Culture Media , Endoplasmic Reticulum Stress/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Humans , Nanoparticles/chemistry , Necrosis/metabolism , Particle Size , Phosphatidylinositol 3-Kinases/metabolism , Reactive Oxygen Species/metabolism , Silicon Dioxide/chemistry , Silicon Dioxide/toxicity
7.
Biomaterials ; 51: 119-128, 2015 May.
Article in English | MEDLINE | ID: mdl-25771003

ABSTRACT

Angiopoietin-1 (Ang1) and its endothelium-specific receptor, tyrosine kinase with Ig and epidermal growth factor homology domain 2 (Tie2), play critical roles in vascular development. Although the Ang1/Tie2 system has been considered a promising target for therapeutic neovascularization, several imitations of large-scale production have hampered the development of recombinant Ang1 for therapeutics. In this study, we produced a fully human agonistic antibody against Tie2, designated 1-4h, and tested the applicability of 1-4h as an alternative to native Ang1 in therapeutic angiogenesis. 1-4h significantly enhanced the phosphorylation of Tie2 in a dose- and time-dependent manner in human Tie2-expressing HEK293 cells and human umbilical vein endothelial cells. Moreover, 1-4h induced the activation of Tie2-mediated intracellular signaling such as AKT, eNOS, MAPK, and Focal Adhesion Kinase p125(FAK). In addition, 1-4h increased the chemotactic motility and capillary-like tube formation of endothelial cells in vitro and enhanced the survival of serum-deprived endothelial cells. Taken together, our data clearly suggest that a human Tie2 agonistic antibody is a potentially useful therapeutic approach for the treatment of several ischemic diseases including delayed-wound healing and ischemic heart and limb diseases.


Subject(s)
Antibodies, Monoclonal/pharmacology , Human Umbilical Vein Endothelial Cells/cytology , Neovascularization, Physiologic/drug effects , Receptor, TIE-2/immunology , Animals , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Movement/drug effects , Cell Survival/drug effects , HEK293 Cells , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Intracellular Space/metabolism , Mice , NIH 3T3 Cells , Peptide Library , Protein Binding/drug effects , Signal Transduction/drug effects , Single-Chain Antibodies/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...