Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 586(7829): 417-423, 2020 10.
Article in English | MEDLINE | ID: mdl-32999463

ABSTRACT

Microglia, the brain's resident macrophages, help to regulate brain function by removing dying neurons, pruning non-functional synapses, and producing ligands that support neuronal survival1. Here we show that microglia are also critical modulators of neuronal activity and associated behavioural responses in mice. Microglia respond to neuronal activation by suppressing neuronal activity, and ablation of microglia amplifies and synchronizes the activity of neurons, leading to seizures. Suppression of neuronal activation by microglia occurs in a highly region-specific fashion and depends on the ability of microglia to sense and catabolize extracellular ATP, which is released upon neuronal activation by neurons and astrocytes. ATP triggers the recruitment of microglial protrusions and is converted by the microglial ATP/ADP hydrolysing ectoenzyme CD39 into AMP; AMP is then converted into adenosine by CD73, which is expressed on microglia as well as other brain cells. Microglial sensing of ATP, the ensuing microglia-dependent production of adenosine, and the adenosine-mediated suppression of neuronal responses via the adenosine receptor A1R are essential for the regulation of neuronal activity and animal behaviour. Our findings suggest that this microglia-driven negative feedback mechanism operates similarly to inhibitory neurons and is essential for protecting the brain from excessive activation in health and disease.


Subject(s)
Feedback, Physiological , Microglia/physiology , Neural Inhibition , Neurons/physiology , 5'-Nucleotidase/metabolism , Action Potentials , Adenosine/metabolism , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/metabolism , Animals , Antigens, CD/metabolism , Apyrase/metabolism , Calcium/metabolism , Corpus Striatum/cytology , Corpus Striatum/physiology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Microglia/cytology , Neural Inhibition/genetics , Receptor, Adenosine A1/metabolism , Receptor, Muscarinic M3/genetics , Receptor, Muscarinic M3/metabolism , Time Factors
2.
Neuropharmacology ; 153: 13-19, 2019 07 15.
Article in English | MEDLINE | ID: mdl-30998946

ABSTRACT

Propensity to relapse following long periods of abstinence is a key feature of substance use disorder. Drugs of abuse, such as cocaine, cause long-term changes in the neural circuitry regulating reward, motivation, and memory processes through dysregulation of various molecular mechanisms, including epigenetic regulation of activity-dependent gene expression. Underlying drug-induced changes to neural circuit function are the molecular mechanisms regulating activity-dependent gene expression. Of note, histone acetyltransferases and histone deacetylases (HDACs), powerful epigenetic regulators of gene expression, are dysregulated following both acute and chronic cocaine exposure and are linked to cocaine-induced changes in neural circuit function. To better understand the effect of drug-induced changes on epigenetic function and behavior, we investigated HDAC3-mediated regulation of Nr4a2/Nurr1 in the medial habenula, an understudied pathway in cocaine-associated behaviors. Nr4a2, a transcription factor critical in cocaine-associated behaviors and necessary for MHb development, is enriched in the cholinergic cell-population of the MHb; yet, the role of NR4A2 within the MHb in the adult brain remains elusive. Here, we evaluated whether epigenetic regulation of Nr4a2 in the MHb has a role in reinstatement of cocaine-associated behaviors. We found that HDAC3 disengages from Nr4a2 in the MHb in response to cocaine-primed reinstatement. Whereas enhancing HDAC3 function in the MHb had no effect on reinstatement, we found, using a dominant-negative splice variant (NURR2C), that loss of NR4A2 function in the MHb blocked reinstatement behaviors. These results show for the first time that regulation of NR4A2 function in the MHb is critical in relapse-like behaviors.


Subject(s)
Cocaine/administration & dosage , Drug-Seeking Behavior/physiology , Epigenesis, Genetic/physiology , Genes, Immediate-Early/physiology , Habenula/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Animals , Epigenesis, Genetic/drug effects , Female , Genes, Immediate-Early/drug effects , Habenula/drug effects , Histone Deacetylases/metabolism , Male , Mice , Mice, Transgenic
3.
Addict Biol ; 24(3): 403-413, 2019 05.
Article in English | MEDLINE | ID: mdl-29430793

ABSTRACT

Propensity to relapse, even following long periods of abstinence, is a key feature in substance use disorders. Relapse and relapse-like behaviors are known to be induced, in part, by re-exposure to drug-associated cues. Yet, while many critical nodes in the neural circuitry contributing to relapse have been identified and studied, a full description of the networks driving reinstatement of drug-seeking behaviors is lacking. One area that may provide further insight to the mechanisms of relapse is the habenula complex, an epithalamic region composed of lateral and medial (MHb) substructures, each with unique cell and target populations. Although well conserved across vertebrate species, the functions of the MHb are not well understood. Recent research has demonstrated that the MHb regulates nicotine aversion and withdrawal. However, it remains undetermined whether MHb function is limited to nicotine and aversive stimuli or if MHb circuit regulates responses to other drugs of abuse. Advances in circuit-level manipulations now allow for cell-type and temporally specific manipulations during behavior, specifically in spatially restrictive brain regions, such as the MHb. In this study, we focus on the response of the MHb to reinstatement of cocaine-associated behavior, demonstrating that cocaine-primed reinstatement of conditioned place preference engages habenula circuitry. Using chemogenetics, we demonstrate that MHb activity is sufficient to induce reinstatement behavior. Together, these data identify the MHb as a key hub in the circuitry underlying reinstatement and may serve as a target for regulating relapse-like behaviors.


Subject(s)
Cocaine/pharmacology , Dopamine Uptake Inhibitors/pharmacology , Habenula/physiology , Analysis of Variance , Animals , Cholinergic Neurons/physiology , Conditioning, Psychological/drug effects , Female , Male , Mice, Inbred C57BL , Recurrence , Signal Transduction/drug effects
4.
Acta Paediatr ; 96(6): 897-901, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17537020

ABSTRACT

AIM: To investigate how postnatal depressive mood was identified by child health nurses and which factors were associated with the implementation of screening for postnatal depression and with offering supportive listening visits. METHODS: A random sample of all 2580 nurses in child health services in Sweden, 499 nurses, were asked to complete a postal questionnaire. A response rate of 70% was achieved. RESULTS: Half of the nurses in the study used the Edinburgh Postnatal Depression Scale (EPDS) and at least another 7% were going to begin. Having the appropriate training, access to regular supervision and pathways to care were essential, and increased the likelihood of using the EPDS. The odds of using the EPDS were six times greater for nurses with access to supervision as compared with nurses without supervision. Most of the nurses who used the EPDS included a follow-up interview on the same occasion as the mother completed the scale, and four out of five nurses allowed extra time for the EPDS. More than half of these allowed half an hour or more. The significance of factors associated with the implementation of routine screening is discussed. CONCLUSION: Training, supervision and pathways to care were essential for the implementation of routine screening with the EPDS.


Subject(s)
Depression, Postpartum/diagnosis , Pediatric Nursing , Psychiatric Status Rating Scales/statistics & numerical data , Adult , Depression, Postpartum/epidemiology , Female , Humans , Reproducibility of Results , Sensitivity and Specificity , Sweden/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...