Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 8(2): 215-220, 2017 Feb 09.
Article in English | MEDLINE | ID: mdl-28197315

ABSTRACT

Activity-based protein profiling (ABPP) has revolutionized the discovery and optimization of active-site ligands across distinct enzyme families, providing a robust platform for in-class selectivity profiling. Nonetheless, this approach is less straightforward for profiling reversible inhibitors and does not access proteins outside the ABPP probe's target profile. While the active-site competitive acyl protein thioesterase 2 inhibitor ML349 (Ki = 120 nM) is highly selective within the serine hydrolase enzyme family, it could still interact with other cellular targets. Here we present a chemoproteomic workflow to enrich and profile candidate ML349-binding proteins. In human cell lysates, biotinylated-ML349 enriches a recurring set of proteins, including metabolite kinases and flavin-dependent oxidoreductases that are potentially enhanced by avidity-driven multimeric interactions. Confirmatory assays by native mass spectrometry and fluorescence polarization quickly rank-ordered these weak off-targets, providing justification to explore ligand interactions and stoichiometry beyond ABPP.

2.
ACS Chem Biol ; 11(12): 3374-3382, 2016 12 16.
Article in English | MEDLINE | ID: mdl-27748579

ABSTRACT

Post-translational S-palmitoylation directs the trafficking and membrane localization of hundreds of cellular proteins, often involving a coordinated palmitoylation cycle that requires both protein acyl transferases (PATs) and acyl protein thioesterases (APTs) to actively redistribute S-palmitoylated proteins toward different cellular membrane compartments. This process is necessary for the trafficking and oncogenic signaling of S-palmitoylated Ras isoforms, and potentially many peripheral membrane proteins. The depalmitoylating enzymes APT1 and APT2 are separately conserved in all vertebrates, suggesting unique functional roles for each enzyme. The recent discovery of the APT isoform-selective inhibitors ML348 and ML349 has opened new possibilities to probe the function of each enzyme, yet it remains unclear how each inhibitor achieves orthogonal inhibition. Herein, we report the high-resolution structure of human APT2 in complex with ML349 (1.64 Å), as well as the complementary structure of human APT1 bound to ML348 (1.55 Å). Although the overall peptide backbone structures are nearly identical, each inhibitor adopts a distinct conformation within each active site. In APT1, the trifluoromethyl group of ML348 is positioned above the catalytic triad, but in APT2, the sulfonyl group of ML349 forms hydrogen bonds with active site resident waters to indirectly engage the catalytic triad and oxyanion hole. Reciprocal mutagenesis and activity profiling revealed several differing residues surrounding the active site that serve as critical gatekeepers for isoform accessibility and dynamics. Structural and biochemical analysis suggests the inhibitors occupy a putative acyl-binding region, establishing the mechanism for isoform-specific inhibition, hydrolysis of acyl substrates, and structural orthogonality important for future probe development.


Subject(s)
Enzyme Inhibitors/pharmacology , Thiolester Hydrolases/antagonists & inhibitors , Amino Acid Sequence , Enzyme Inhibitors/chemistry , Humans , Models, Molecular , Protein Conformation, alpha-Helical/drug effects , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Thiolester Hydrolases/chemistry , Thiolester Hydrolases/metabolism
3.
Liver Transpl ; 20(1): 81-8, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24115315

ABSTRACT

Hilar cholangiocarcinoma (CCA) is a difficult malignancy to treat surgically because of its anatomical location and its frequent association with primary sclerosing cholangitis. Neoadjuvant chemoradiotherapy followed by liver transplantation in lymph node-negative patients has been advanced by select liver transplant centers for the treatment of patients with unresectable disease. This approach has most commonly used external-beam radiotherapy in combination with biliary brachytherapy and 5-fluorouracil-based chemotherapy. Our center recently embarked on a protocol using stereotactic body radiation therapy (SBRT) followed by capecitabine in lymph node-negative patients until liver transplantation. We, therefore, retrospectively determined the tolerability and pathological response in this pilot study. During a 3-year period, 17 patients with unresectable hilar CCA were evaluated for treatment under this protocol. In all, 12 patients qualified for neoadjuvant therapy and were treated with SBRT (50-60 Gy in 3-5 fractions over the course of 2 weeks). After 1 week of rest, capecitabine was initiated at 1330 mg/m(2) /day, and it was continued until liver transplantation. During neoadjuvant therapy, there were 35 adverse events in all, with cholangitis and palmar-plantar erythrodysesthesia being the most common. Capecitabine dose reductions were required on 5 occasions. Ultimately, 9 patients were listed for transplantation, and 6 patients received a liver transplant. The explant pathology of hilar tumors showed at least a partial treatment response in 5 patients, with extensive tumor necrosis and fibrosis noted. Additionally, high apoptotic indices and low proliferative indices were measured during histological examinations. Eleven transplant-related complications occurred, and the 1-year survival rate after transplantation was 83%. In this pilot study, neoadjuvant therapy with SBRT, capecitabine, and liver transplantation for unresectable CCA demonstrated acceptable tolerability. Further studies will determine the overall future efficacy of this therapy.


Subject(s)
Cholangiocarcinoma/therapy , Deoxycytidine/analogs & derivatives , Fluorouracil/analogs & derivatives , Liver Neoplasms/therapy , Liver Transplantation , Radiosurgery , Aged , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Capecitabine , Chemoradiotherapy , Cholangitis, Sclerosing/complications , Cholangitis, Sclerosing/therapy , Deoxycytidine/administration & dosage , Deoxycytidine/therapeutic use , Female , Fibrosis/pathology , Fluorouracil/administration & dosage , Fluorouracil/therapeutic use , Humans , Male , Middle Aged , Monitoring, Physiologic , Necrosis/pathology , Neoadjuvant Therapy , Retrospective Studies , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...