Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Microbiol ; 120(5): 670-683, 2023 11.
Article in English | MEDLINE | ID: mdl-37675594

ABSTRACT

FliL is an essential component of the flagellar machinery in some bacteria, but a conditional one in others. The conditional role is for optimal swarming in some bacteria. During swarming, physical forces associated with movement on a surface are expected to exert a higher load on the flagellum, requiring more motor torque to move. FliL was reported to enhance motor output in several bacteria and observed to assemble as a ring around ion-conducting stators that power the motor. In this study we identify a common new function for FliL in diverse bacteria-Escherichia coli, Bacillus subtilis, and Proteus mirabilis. During swarming, all these bacteria show increased cell speed and a skewed motor bias that suppresses cell tumbling. We demonstrate that these altered motor parameters, or "motor remodeling," require FliL. Both swarming and motor remodeling can be restored in an E. coli fliL mutant by complementation with fliL genes from P. mirabilis and B. subtilis, showing conservation of a swarming-associated FliL function across phyla. In addition, we demonstrate that the strong interaction we reported earlier between FliL and the flagellar MS-ring protein FliF is confined to the RBM-3 domain of FliF that links the periplasmic rod to the cytoplasmic C-ring. This interaction may explain several phenotypes associated with the absence of FliL.


Subject(s)
Bacterial Proteins , Membrane Proteins , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Membrane Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Movement , Flagella/metabolism
2.
bioRxiv ; 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37503052

ABSTRACT

FliL is an essential component of the flagellar machinery in some bacteria, but a conditional one in others. The conditional role is for optimal swarming in some bacteria. During swarming, physical forces associated with movement on a surface are expected to exert a higher load on the flagellum, requiring more motor torque to move. Bacterial physiology and morphology are also altered during swarming to cope with the challenges of surface navigation. FliL was reported to enhance motor output in several bacteria and observed to assemble as a ring around ion-conducting stators that power the motor. In this study we identify a common new function for FliL in diverse bacteria - Escherichia coli, Bacillus subtilis and Proteus mirabilis . During swarming, all these bacteria show increased cell speed and a skewed motor bias that suppresses cell tumbling. We demonstrate that these altered motor parameters, or 'motor remodeling', require FliL. Both swarming and motor remodeling can be restored in an E. coli fliL mutant by complementation with fliL genes from P. mirabilis and B. subtilis , showing conservation of swarming-associated FliL function across phyla. In addition, we demonstrate that the strong interaction we reported earlier between FliL and the flagellar MS-ring protein FliF is confined to the RBM-3 domain of FliF that links the periplasmic rod to the cytoplasmic C-ring. This interaction may explain several phenotypes associated with the absence of FliL.

3.
mBio ; 14(2): e0061923, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37036337

ABSTRACT

c-di-GMP primarily controls motile to sessile transitions in bacteria. Diguanylate cyclases (DGCs) catalyze the synthesis of c-di-GMP from two GTP molecules. Typically, bacteria encode multiple DGCs that are activated by specific environmental signals. Their catalytic activity is modulated by c-di-GMP binding to autoinhibitory sites (I-sites). YfiN is a conserved inner membrane DGC that lacks these sites. Instead, YfiN activity is directly repressed by periplasmic YfiR, which is inactivated by redox stress. In Escherichia coli, an additional envelope stress causes YfiN to relocate to the mid-cell to inhibit cell division by interacting with the division machinery. Here, we report a third activity for YfiN in E. coli, where cell growth is inhibited without YfiN relocating to the division site. This action of YfiN is only observed when the bacteria are cultured on gluconeogenic carbon sources, and is dependent on absence of the autoinhibitory sites. Restoration of I-site function relieves the growth-arrest phenotype, and disabling this function in a heterologous DGC causes acquisition of this phenotype. Arrested cells are tolerant to a wide range of antibiotics. We show that the likely cause of growth arrest is depletion of cellular GTP from run-away synthesis of c-di-GMP, explaining the dependence of growth arrest on gluconeogenic carbon sources that exhaust more GTP during production of glucose. This is the first report of c-di-GMP-mediated growth arrest by altering metabolic flow. IMPORTANCE The c-di-GMP signaling network in bacteria not only controls a variety of cellular processes such as motility, biofilms, cell development, and virulence, but does so by a dizzying array of mechanisms. The DGC YfiN singularly represents the versatility of this network in that it not only inhibits motility and promotes biofilms, but also arrests growth in Escherichia coli by relocating to the mid-cell and blocking cell division. The work described here reveals that YfiN arrests growth by yet another mechanism in E. coli, changing metabolic flow. This function of YfiN, or of DGCs without autoinhibitory I-sites, may contribute to antibiotic tolerant persisters in relevant niches such as the gut where gluconeogenic sugars are found.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Second Messenger Systems , Cyclic GMP/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Biofilms , Phosphorus-Oxygen Lyases/genetics , Phosphorus-Oxygen Lyases/metabolism , Guanosine Triphosphate/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial
4.
Mol Cell ; 82(22): 4368-4385.e6, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36400010

ABSTRACT

Efflux is a common mechanism of resistance to antibiotics. We show that efflux itself promotes accumulation of antibiotic-resistance mutations (ARMs). This phenomenon was initially discovered in a bacterial swarm where the linked phenotypes of high efflux and high mutation frequencies spatially segregated to the edge, driven there by motility. We have uncovered and validated a global regulatory network connecting high efflux to downregulation of specific DNA-repair pathways even in non-swarming states. The efflux-DNA repair link was corroborated in a clinical "resistome" database: genomes with mutations that increase efflux exhibit a significant increase in ARMs. Accordingly, efflux inhibitors decreased evolvability to antibiotic resistance. Swarms also revealed how bacterial populations serve as a reservoir of ARMs even in the absence of antibiotic selection pressure. High efflux at the edge births mutants that, despite compromised fitness, survive there because of reduced competition. This finding is relevant to biofilms where efflux activity is high.


Subject(s)
Anti-Bacterial Agents , Bacteria , Drug Resistance, Microbial , Biological Transport , Anti-Bacterial Agents/pharmacology , Bacteria/genetics
5.
Mol Cells ; 41(3): 214-223, 2018 Mar 31.
Article in English | MEDLINE | ID: mdl-29463066

ABSTRACT

Oligoadenylate synthetase (OAS) protein family is the major interferon (IFN)-stimulated genes responsible for the activation of RNase L pathway upon viral infection. OAS-like (OASL) is also required for inhibition of viral growth in human cells, but the loss of one of its mouse homolog, OASL1, causes a severe defect in termination of type I interferon production. To further investigate the antiviral activity of OASL1, we examined its subcellular localization and regulatory roles in IFN production in the early and late stages of viral infection. We found OASL1, but not OASL2, formed stress granules trapping viral RNAs and promoted efficient RLR signaling in early stages of infection. Stress granule formation was dependent on RNA binding activity of OASL1. But in the late stages of infection, OASL1 interacted with IRF7 transcripts to inhibit translation resulting in down regulation of IFN production. These results implicate that OASL1 plays context dependent functions in the antiviral response for the clearance and resolution of viral infections.


Subject(s)
2',5'-Oligoadenylate Synthetase/immunology , Cytoplasmic Granules/immunology , RNA, Viral/metabolism , Virus Diseases/immunology , 2',5'-Oligoadenylate Synthetase/metabolism , Animals , Cytoplasmic Granules/enzymology , Cytoplasmic Granules/metabolism , Cytoplasmic Granules/virology , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/immunology , Interferon Regulatory Factor-7/metabolism , Interferons/biosynthesis , Interferons/immunology , Mice , NIH 3T3 Cells , Transfection , Virus Diseases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...