Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(14): e2318039121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38536750

ABSTRACT

Melanosomes are specific organelles dedicated to melanin synthesis and accumulation in melanocytes. Autophagy is suggestively involved in melanosome degradation, although the potential underlying molecular mechanisms remain elusive. In selective autophagy, autophagy receptors and E3-ligases are the key factors conferring cargo selectivity. In B16F10 cells, ß-mangostin efficiently induced melanosome degradation without affecting other organelles such as mitochondria, peroxisomes, and the endoplasmic reticulum. Among various autophagy receptors, optineurin (OPTN) contributes TANK-binding kinase 1 (TBK1)-dependently to melanosome degradation and its knockdown inhibited ß-mangostin-mediated melanosome degradation. OPTN translocation to melanosomes was dependent on its ubiquitin-binding domain. Moreover, OPTN-mediated TBK1 activation and subsequent TBK1-mediated S187 OPTN phosphorylation were essential for melanosome degradation. ß-mangostin increased K63-linked melanosome ubiquitination. Finally, the E3-ligase RCHY1 knockdown inhibited the melanosome ubiquitination required for OPTN- and TBK1-phosphorylation as well as melanosome degradation. This study suggests that melanophagy, melanosome-selective autophagy, contributes to melanosome degradation, and OPTN and RCHY1 are an essential autophagy receptor and a E3-ligase, respectively, conferring cargo selectivity in melanophagy.


Subject(s)
Autophagy , Melanosomes , Melanosomes/metabolism , Ubiquitin-Protein Ligases/metabolism , Xanthones , Melanoma, Experimental , Animals , Mice
2.
Immun Ageing ; 20(1): 67, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38001481

ABSTRACT

TLR4, a transmembrane receptor, plays a central role in the innate immune response. TLR4 not only engages with exogenous ligands at the cellular membrane's surface but also interacts with intracellular ligands, initiating intricate intracellular signaling cascades. Through MyD88, an adaptor protein, TLR4 activates transcription factors NF-κB and AP-1, thereby facilitating the upregulation of pro-inflammatory cytokines. Another adapter protein linked to TLR4, known as TRIF, autonomously propagates signaling pathways, resulting in heightened interferon expression. Recently, TLR4 has garnered attention as a significant factor in the regulation of symptoms in aging-related disorders. The persistent inflammatory response triggered by TLR4 contributes to the onset and exacerbation of these disorders. In addition, alterations in TLR4 expression levels play a pivotal role in modifying the manifestations of age-related diseases. In this review, we aim to consolidate the impact of TLR4 on cellular senescence and aging-related ailments, highlighting the potential of TLR4 as a novel therapeutic target that extends beyond immune responses.

3.
Int J Mol Med ; 52(3)2023 09.
Article in English | MEDLINE | ID: mdl-37503759

ABSTRACT

RAS activation is a key determinant of breast cancer progression and metastasis. However, the role of the interaction among exosomes, RAS and microRNAs (miRNAs/miRs) in the osteolytic bone metastasis of breast cancer remains unclear. Therefore, the present study aimed to examine the role of activated RAS (KRAS, HRAS and NRAS) in the release of exosome­mediated osteoclastogenic miRNAs and to elucidate their functional role in bone microenvironment remodeling in vitro and in vivo. Exosomes derived from RAS­activated breast cancer cells promoted RANKL­induced osteoclastogenesis; however, RAS inhibition abolished this effect. miR­494­3p, miR­4508 and miR­6869­5p were identified as osteoclastogenic miRNAs in the exosomes secreted by RAS­activated breast cancer cells. The levels of these osteoclastogenic miRNAs in the sera of patients with human epidermal growth factor receptor 2­positive luminal breast cancer were significantly higher than those in the sera of patients with triple­negative breast cancer. miR­494­3p exhibited both osteoclastogenic and anti­osteoblastogenic activity. Treatment with a miR­494­3p inhibitor abolished the exosome­mediated increase in RANKL­induced osteoclastogenesis. Treatment with a miR­494­3p mimic enhanced RANKL­induced osteoclast formation; however, treatment with its inhibitor suppressed this effect by targeting leucine­rich repeat­containing G­protein coupled receptor 4 in osteoclast precursors. Furthermore, miR­494­3p inhibited bone morphogenetic protein 2­induced osteoblast formation by targeting semaphorin 3A. In a mouse model, exosomes derived from breast cancer cells promoted osteolytic bone lesions; however, treatment with a miR­494­3p inhibitor significantly suppressed this effect. On the whole, the present study provides a novel mechanism, demonstrating that the RAS activation of breast cancer cells induces osteolytic bone metastasis by stimulating the exosome­mediated transfer of osteoclastogenic miRNAs, including miR­494­3p to bone cells.


Subject(s)
Bone Neoplasms , Breast Neoplasms , MicroRNAs , Triple Negative Breast Neoplasms , Animals , Mice , Humans , Female , Breast Neoplasms/pathology , MicroRNAs/metabolism , Osteoclasts/metabolism , Bone Neoplasms/pathology , Bone and Bones/metabolism , Triple Negative Breast Neoplasms/metabolism , Cell Line, Tumor , Tumor Microenvironment
4.
Int J Mol Sci ; 24(11)2023 May 29.
Article in English | MEDLINE | ID: mdl-37298370

ABSTRACT

Syntenin acts as an adaptor and scaffold protein through its two PSD-95, Dlg, and ZO-1 (PDZ) domains, participating in multiple signaling pathways and modulating cellular physiology. It has been identified as an oncogene, promoting cancer development, metastasis, and angiogenesis in various carcinomas. Syntenin-1 is also associated with the production and release of exosomes, small extracellular vesicles that play a significant role in intercellular communication by containing bioactive molecules such as proteins, lipids, and nucleic acids. The trafficking of exosomes involves a complex interplay of various regulatory proteins, including syntenin-1, which interacts with its binding partners, syndecan and activated leukocyte cell adhesion molecule (ALIX). Exosomal transfer of microRNAs, a key cargo, can regulate the expression of various cancer-related genes, including syntenin-1. Targeting the mechanism involving the regulation of exosomes by syntenin-1 and microRNAs may provide a novel treatment strategy for cancer. This review highlights the current understanding of syntenin-1's role in regulating exosome trafficking and its associated cellular signaling pathways.


Subject(s)
Exosomes , MicroRNAs , Neoplasms , Humans , Exosomes/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Syndecans/metabolism , Syntenins/metabolism
5.
Cancers (Basel) ; 16(1)2023 Dec 24.
Article in English | MEDLINE | ID: mdl-38201533

ABSTRACT

Snail is a key regulator of the epithelial-mesenchymal transition (EMT), the key step in the tumorigenesis and metastasis of tumors. Although induction of Snail transcription precedes the induction of EMT, the post-translational regulation of Snail is also important in determining Snail protein levels, stability, and its ability to induce EMT. Several kinases are known to enhance the stability of the Snail protein by preventing its ubiquitination; however, the precise molecular mechanisms by which these kinases prevent Snail ubiquitination remain unclear. Here, we identified ERK3 as a novel kinase that interacts with Snail and enhances its protein stability. Although ERK3 could not directly phosphorylate Snail, Erk3 increased Snail protein stability by inhibiting the binding of FBXO11, an E3 ubiquitin ligase that can induce Snail ubiquitination and degradation, to Snail. Importantly, functional studies and analysis of clinical samples indicated the crucial role of ERK3 in the regulation of Snail protein stability in pancreatic cancer. Therefore, we conclude that ERK3 is a key regulator for enhancing Snail protein stability in pancreatic cancer cells by inhibiting the interaction between Snail and FBXO11.

6.
Curr Issues Mol Biol ; 44(12): 5848-5865, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36547059

ABSTRACT

Triple-negative breast cancer (TNBC) is more difficult to treat and has a higher mortality rate than other subtypes. Although hormone receptor-targeted therapy is an effective treatment to increase survival rate in breast cancer patients, it is not suitable for TNBC patients. To address the issues, differentially expressed genes (DEGs) in TNBC patients from the Gene Expression Omnibus (GEO) database were analyzed. A total of 170 genes were obtained from three Genomic Spatial Events (GSEs) using the intersection of each GSE dataset and 61 DEGs were identified after validation with the gene enrichment analysis. We combined this with the degree scores from the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and protein-protein interaction (PPI) network, of which 7 genes were correlated with survival rate. Finally, a proteomics database revealed that only the CHK1 protein level was differently expressed in basal-like compared with other subtypes. We demonstrated that CHK1 expression was higher in TNBC cell lines compared with non-TNBC cell lines, and CHK1 promotes epithelial to mesenchymal transition (EMT) as well as migration and invasion ability. Our study provides new insight into the TNBC subnetwork that may be useful in the prognosis and treatment of TNBC patients.

7.
Curr Issues Mol Biol ; 44(7): 2856-2867, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35877420

ABSTRACT

In this study, we investigated the depigmentation effect of Amorpha fruticosa L. root extract (RE), an herbal medicine. A. fruticosa RE significantly induced depigmentation in α-MSH-treated B16F10 cells at noncytotoxic concentrations. Further, the RE decreased the protein levels of the melanosomal proteins Tyr and Pmel without decreasing their transcript levels. We found that MG132, a proteasome complex inhibitor, was unable to rescue the protein levels, but PepA/E-64D (a lysosomal enzyme inhibitor), 3-MA (a representative autophagy inhibitor), and ATG5 knockdown effectively rescued the protein levels and inhibited the depigmentation effect following RE treatment. Among rotenoids, amorphigenin composed in the RE was identified as a functional chemical that could induce depigmentation; whereas rapamycin, an mTOR inhibitor and a nonselective autophagy inducer, could not induce depigmentation, and amorphigenin effectively induced depigmentation through the degradation of melanosomal proteins. Amorphigenin activated AMPK without affecting mTOR, and knockdown of AMPK offset the whitening effect through degradation of melanosome proteins by amorphigenin. Results from this study suggested that amorphigenin can induce degradation of the melanosome through an AMPK-dependent autophagy process, and has the potential to be used as a depigmentation agent for the treatment of hyperpigmentation.

8.
Cells ; 11(9)2022 05 02.
Article in English | MEDLINE | ID: mdl-35563830

ABSTRACT

Endothelial cells (ECs), lining blood vessels' lumen, play an essential role in regulating vascular functions. As multifunctional components of vascular structures, pluripotent stem cells (PSCs) are the promising source for potential therapeutic applications in various vascular diseases. Our laboratory has previously established an approach for differentiating porcine epiblast stem cells (pEpiSCs) into ECs, representing an alternative and potentially superior cell source. However, the condition of pEpiSCs-derived ECs growth has yet to be determined, and whether pEpiSCs differentiate into functional ECs remained unclear. Changes in morphology, proliferation and functional endothelial marker were assessed in pEpiSCs-derived ECs in vitro. pEpiSCs-derived ECs were subjected to magnetic-activated cell sorting (MACS) to collect CD-31+ of ECs. We found that sorted ECs showed the highest proliferation rate in differentiation media in primary culture and M199 media in the subculture. Next, sorted ECs were examined for their ability to act as typical vascular ECs through capillary-like structure formation assay, Dil-acetylated low-density lipoprotein (Dil-Ac-LDL) uptake, and three-dimensional spheroid sprouting. Consequently, pEpiSCs-derived ECs function as typical vascular ECs, indicating that pEpiSC-derived ECs might be used to develop cell therapeutics for vascular disease.


Subject(s)
Endothelial Cells , Pluripotent Stem Cells , Animals , Cell Differentiation , Cell Proliferation , Germ Layers , Swine
9.
Molecules ; 27(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35268650

ABSTRACT

Melanin pigment produced in melanocytes plays a protective role against ultraviolet radiation. Selective destruction of melanocytes causes chronic depigmentation conditions such as vitiligo, for which there are very few specific medical treatments. Here, we found that fraxinol, a natural coumarin from Fraxinus plants, effectively stimulated melanogenesis. Treatment of B16-F10 cells with fraxinol increased the melanin content and tyrosinase activity in a concentration-dependent manner without causing cytotoxicity. Additionally, fraxinol enhanced the mRNA expression of melanogenic enzymes such as tyrosinase, tyrosinase-related protein-1, and tyrosinase-related protein-2. Fraxinol also increased the expression of microphthalmia-associated transcription factor at both mRNA and protein levels. Fraxinol upregulated the phosphorylation of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB). Furthermore, H89, a cAMP-dependent protein kinase A inhibitor, decreased fraxinol-induced CREB phosphorylation and microphthalmia-associated transcription factor expression and significantly attenuated the fraxinol-induced melanin content and intracellular tyrosinase activity. These results suggest that fraxinol enhances melanogenesis via a protein kinase A-mediated mechanism, which may be useful for developing potent melanogenesis stimulators.


Subject(s)
Microphthalmia-Associated Transcription Factor
10.
Cell Death Dis ; 13(2): 122, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35136055

ABSTRACT

Small extracellular vesicles (sEVs) play a pivotal role in tumor progression by mediating intercellular communication in the tumor microenvironment (TME). Syntenin-1 induces malignant tumor progression in various types of human cancers, including human lung cancer and regulates biogenesis of sEVs. However, the function of syntenin-1-regulated sEVs and miRNAs in sEVs remains to be elucidated. In the present study, we aimed to demonstrate the role of oncogenic Ras/syntenin-1 axis in the release of sEVs and elucidate the function of syntenin-1-mediated miRNAs in sEVs in lung cancer progression. The results revealed that oncogenic Ras promoted the release of sEVs by inducing syntenin-1 expression; disruption of syntenin-1 expression impaired the release of sEVs as well as sEV-mediated cancer cell migration and angiogenesis. Moreover, we identified three miRNAs, namely miR-181a, miR-425-5p, and miR-494-3p, as onco-miRNAs loaded into syntenin-1-dependent sEVs. Remarkably, miR-494-3p was highly abundant in sEVs and its release was triggered by syntenin-1 expression and oncogenic Ras. Ectopic expression of the miR-494-3p mimic enhanced the migration and proliferation of lung cancer cells as well as tube formation in endothelial cells; however, the miR-494-3p inhibitor blocked sEV-mediated effects by targeting tyrosine-protein phosphatase nonreceptor type 12 (PTPN12), a tumor suppressor. sEVs promoted tumor growth and angiogenesis by downregulating PTPN12 expression; however, the miR-494-3p inhibitor significantly suppressed these effects in vivo, confirming that miR-494-3p acts as a major onco-miRNA loaded into lung cancer cell-derived sEVs. Eventually, the oncogenic Ras/syntenin-1 axis may induce cancer progression by increasing miR-494-3p loading into sEVs in lung cancer cells in the TME.


Subject(s)
Extracellular Vesicles , Lung Neoplasms , MicroRNAs , Syntenins , Cell Proliferation/genetics , Endothelial Cells/metabolism , Extracellular Vesicles/metabolism , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 12/metabolism , Syntenins/genetics , Syntenins/metabolism , Tumor Microenvironment
11.
Cancers (Basel) ; 14(1)2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35008419

ABSTRACT

Rho GDP dissociation inhibitor 2 (RhoGDI2), a regulator of Rho family GTPase, has been known to promote tumor growth and malignant progression in gastric cancer. We previously showed that RhoGDI2 positively regulates Rac1 activity and Rac1 activation is critical for RhoGDI2-induced gastric cancer cell invasion. In this study, to identify the precise molecular mechanism by which RhoGDI2 activates Rac1 activity, we performed two-hybrid screenings using yeast and found that RhoGDI2 plays an important role in the interaction between Rac1, Filamin A and Rac1 activation in gastric cancer cells. Moreover, we found that Filamin A is required for Rac1 activation and the invasive ability of gastric cancer cells. Depletion of Filamin A expression markedly reduced Rac1 activity in RhoGDI2-expressing gastric cancer cells. The migration and invasion ability of RhoGDI2-expressing gastric cancer cells also substantially decreased when Filamin A expression was depleted. Furthermore, we found that Trio, a Rac1-specific guanine nucleotide exchange factor (GEF), is critical for Rac1 activation and the invasive ability of gastric cancer cells. Therefore, we conclude that RhoGDI2 increases Rac1 activity by recruiting Rac1 to Filamin A and enhancing the interaction between Rac1 and Trio, which is critical for the invasive ability of gastric cancer cells.

12.
Front Cardiovasc Med ; 9: 1058308, 2022.
Article in English | MEDLINE | ID: mdl-36620623

ABSTRACT

Vascular aging plays a pivotal role in the morbidity and mortality of older people. Reactive hyperemia index (RHI) detected by pulse amplitude tonometry (PAT) is a non-invasive measure of vascular endothelial function and aging-induced pathogenesis of both microvascular and macrovascular diseases. We conducted a genome-wide association study (GWAS) to comprehensively identify germline genetic variants associated with vascular aging in a Korean population, which revealed 60 suggestive genes underlying angiogenesis, inflammatory response in blood vessels, and cardiovascular diseases. Subsequently, we show that putative protective alleles were significantly enriched in an independent population with decelerated vascular aging phenotypes. Finally, we show the differential mRNA expression levels of putative causal genes in aging human primary endothelial cells via quantitative real-time polymerase chain reaction (PCR). These results highlight the potential contribution of genetic variants in the etiology of vascular aging and may suggest the link between vascular aging and cardiovascular traits.

13.
Cell Reprogram ; 23(4): 221-238, 2021 08.
Article in English | MEDLINE | ID: mdl-34227846

ABSTRACT

Porcine embryonic stem cells (pESCs) would provide potentials for agricultural- and biotechnological-related applications. However, authentic pESCs have not been established yet because standards for porcine stem cell-specific markers and culture conditions are not clear. Therefore, the present study reports attempts to derive pluripotent epiblast stem cells either from in vitro or in vivo derived porcine embryos. Nine epiblast cell lines (seven lines from Berkshire and two lines from Duroc) could only be isolated from day 9- to 9.5-old in vivo derived early conceptuses. Pluripotency features were analyzed in relation to the presence or absence of alkaline phosphatase (AP) activity. Interestingly, the mRNA expression of several marker genes for pluripotency or epiblast was different between putative epiblast stem cells of the two groups [AP-positive (+) pEpiSC-like cell 2 line and AP-negative (-) pEpiSC-like cell 8 line]. For example, expressions of OCT-3/4, NANOG, SOX2, c-MYC, FGF2, and NODAL in AP-negative (-) porcine epiblast stem cell (pEpiSC)-like cells were higher than those in AP-positive (+) pEpiSC-like cells. Expression of surface markers differed between the two groups to some extent. SSEA-1 was strongly expressed only in AP-negative (-) pEpiSC-like cells, whereas AP-positive (+) pEpiSC-like cells did not express. In addition, we report to have some differences in the in vitro differentiation capacity between AP-positive (+) and AP-negative (-) epiblast cell lines. Primary embryonic germ layer markers (cardiac actin, nestin, and GATA 6) and primordial germ cell markers (Dazl and Vasa) were strongly expressed in embryoid bodies (EBs) aggregated from AP-negative (-) pEpiSC-like cells, whereas EBs aggregated from AP-positive (+) pEpiSCs did not show expression of primary embryonic germ layers and primordial germ cell markers except GATA 6. These results indicate that pEpiSC-like cells display different pluripotency characteristics in relation to AP activity.


Subject(s)
Alkaline Phosphatase/metabolism , Cell Differentiation , Embryo, Mammalian/cytology , Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic , Germ Layers/cytology , Pluripotent Stem Cells/cytology , Animals , Embryo, Mammalian/enzymology , Embryoid Bodies/cytology , Embryoid Bodies/enzymology , Embryonic Stem Cells/cytology , Embryonic Stem Cells/enzymology , Female , Germ Layers/enzymology , Pluripotent Stem Cells/enzymology , Swine
14.
Molecules ; 26(9)2021 May 10.
Article in English | MEDLINE | ID: mdl-34068714

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract that consists of Crohn's disease (CD) and ulcerative colitis (UC). Cytokines are thought to be key mediators of inflammation-mediated pathological processes of IBD. These cytokines play a crucial role through the Janus kinase (JAK) and signal transducer and activator of transcription (STAT) signaling pathways. Several small molecules inhibiting JAK have been used in clinical trials, and one of them has been approved for IBD treatment. Many anti-inflammatory phytochemicals have been shown to have potential as new drugs for IBD treatment. This review describes the significance of the JAK-STAT pathway as a current therapeutic target for IBD and discusses the recent findings that phytochemicals can ameliorate disease symptoms by affecting the JAK-STAT pathway in vivo in IBD disease models. Thus, we suggest that phytochemicals modulating JAK-STAT pathways are potential candidates for developing new therapeutic drugs, alternative medicines, and nutraceutical agents for the treatment of IBD.


Subject(s)
Inflammatory Bowel Diseases/drug therapy , Janus Kinases/metabolism , Phytochemicals/therapeutic use , STAT Transcription Factors/metabolism , Signal Transduction , Animals , Disease Models, Animal , Humans , Phytochemicals/pharmacology
15.
Cell Reprogram ; 23(2): 89-98, 2021 04.
Article in English | MEDLINE | ID: mdl-33861642

ABSTRACT

Pluripotent stem cells (PSCs) have the ability of self-renewal that can retain the characteristics of the mother cell, and of pluripotency that can differentiate into several body types. PSCs typically include embryonic stem cells (ESCs) derived from the inner cell mass of the preimplantation embryo, and epiblast stem cells (EpiSCs) derived from the epiblast of postimplantation embryo. Although PSCs are able to be used by differentiation into endothelial cells as a potential treatment for vascular diseases, human ESCs and induced PSCs (iPSCs) are followed by ethical and safety issues. Pigs are anatomically and physiologically similar to humans. Therefore, the goal of this study was to establish an efficient protocol that differentiates porcine EpiSCs (pEpiSCs) into the endothelial cells for applying the treatment of human vascular diseases. As a result, alkaline phosphatase (AP)-negative (-) pEpiSCs cultured in endothelial cell growth basal medium-2 (EBM-2) differentiation medium in association with 50 ng/mL of vascular endothelial growth factor (VEGF) for 8 days were changed morphologically like the feature of endothelial cells, and expression of pluripotency-associated markers (OCT-3/4, NANOG, SOX2, and C-MYC) in porcine differentiated cells was significantly decreased (p < 0.05). Additionally, when pEpiSCs were cultured in EBM-2 + 50 ng/mL of VEGF, porcine differentiated cells represented a common endothelial cell marker positive (CD31+) but monocytes and lymphocytes marker negative (CD45-). Therefore, these results indicated that pEpiSCs cultured in EBM-2 + 50 ng/mL of VEGF culture condition were efficiently differentiated into endothelial cells for the treatment of blood vessel diseases.


Subject(s)
Cell Differentiation , Embryonic Development , Embryonic Stem Cells/cytology , Endothelial Cells/cytology , Germ Layers/cytology , Pluripotent Stem Cells/cytology , Animals , Embryonic Stem Cells/metabolism , Endothelial Cells/metabolism , Gene Expression Regulation, Developmental , Germ Layers/metabolism , Pluripotent Stem Cells/metabolism , Swine
16.
Oncogenesis ; 10(2): 17, 2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33637682

ABSTRACT

Transforming growth factor-ß (TGF-ß) signaling pathways are well-recognized for their role in proliferation and epithelial-mesenchymal transition (EMT) of cancer cells, but much less is understood about their contribution to interactions with other signaling events. Recent studies have indicated that crosstalk between TGF-ß and Ras signaling makes a contribution to TGF-ß-mediated EMT. Here, we demonstrate that Jumonji domain containing-3 (JMJD3 also called KDM6B) promotes TGF-ß-mediated Smad activation and EMT in Ras-activated lung cancer cells. JMJD3 in lung cancer patients was significantly increased and JMJD3 expression in lung tumor tissues was correlated with expression of K-Ras or H-Ras in particular, and its expression was regulated by Ras activity in lung cancer cells. JMJD3 promotes TGF-ß-induced Smad activation and EMT in Ras-activated lung cancer cells through the induction of syntenin, a protein that regulates TGF-ß receptor activation upon ligand binding. Tissue array and ChIP analysis revealed that JMJD3 epigenetically induces syntenin expression by directly regulating H3K27 methylation levels. Mechanical exploration identified a physical and functional association of JMJD3 with syntenin presiding over the TGF-ß in Ras-activated lung cancer cells. Taken together, these findings provide new insight into the mechanisms by which JMJD3 promotes syntenin expression resulting in oncogenic Ras cooperation with TGF-ß to promote EMT.

17.
Int J Mol Sci ; 21(24)2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33327489

ABSTRACT

Albanol B (ABN-B), an arylbenzofuran derivative isolated from mulberries, has been shown to have anti-Alzheimer's disease, anti-bacterial and antioxidant activities. The aim of this study was to investigate the anti-cancer effect of this compound against lung cancer cells. The results show that ABN-B inhibited the proliferation of four human lung cancer cell lines (A549, BZR, H1975, and H226) and induced apoptosis, based on the cleavage of caspase-7 and PARP (poly (ADP-ribose) polymerase), as well as the downregulation of Bcl-2. ABN-B also induced cell cycle arrest at G2/M by down-regulating the expression of CKD1 (cyclin-dependent kinase 1) and cyclin B1, but up-regulating p21 (cyclin-dependent kinase inhibitor 1) expression. Notably, ABN-B increased the production of mitochondrial reactive oxygen species (ROS); however, treatment with mito-TEMPO (a specific mitochondrial antioxidant) blocked ABN-B-induced cell cycle arrest at G2/M and apoptosis, as well as the up-regulation of p21 and down-regulation of CDK1 and cyclin B1 induced by ABN-B. At the molecular level, ABN-B-induced mitochondrial ROS production increased the phosphorylation levels of AKT (protein kinase B) and ERK1/2 (extracellular signal-regulated kinase 1/2), while the inhibition of these kinases blocked the ABN-B-induced up-regulation of p21 and down-regulation of CDK1 and cyclin B1. Moreover, ABN-B significantly suppressed tumor growth in Ex-3LL (Lewis lung carcinoma) tumor-bearing mice. Taken together, these results suggest that ABN-B can exert an anti-cancer effect by inducing apoptosis and cell cycle arrest at G2/M through mitochondrial ROS production in lung cancer cells.


Subject(s)
Benzofurans/chemistry , Flavonoids/chemistry , Mitochondria/drug effects , Animals , Apoptosis/drug effects , Benzofurans/pharmacology , Flavonoids/pharmacology , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Promyelocytic Leukemia Zinc Finger Protein/metabolism , Reactive Oxygen Species/metabolism
18.
Int J Mol Sci ; 21(15)2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32718089

ABSTRACT

Olean-12-en-27-oic acids possess a variety of pharmacological effects. However, their effects and underlying mechanisms on osteoclastogenesis remain unclear. This study aimed to investigate the anti-osteoclastogenic effects of five olean-12-en-27-oic acid derivatives including 3α,23-isopropylidenedioxyolean-12-en-27-oic acid (AR-1), 3-oxoolean-12-en-27-oic acid (AR-2), 3α-hydroxyolean-12-en-27-oic acid (AR-3), 23-hydroxy-3-oxoolean-12-en-27-oic acid (AR-4), and aceriphyllic acid A (AR-5). Among the five olean-12-en-27-oic acid derivatives, 3-hydroxyolean-12-en-27-oic acid derivatives, AR-3 and AR-5, significantly inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced mature osteoclast formation by reducing the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts, F-actin ring formation, and mineral resorption activity. AR-3 and AR-5 decreased RANKL-induced expression levels of osteoclast-specific marker genes such as c-Src, TRAP, and cathepsin K (CtsK) as well as c-Fos and nuclear factor of activated T cells cytoplasmic 1 (NFATc1). Mice treated with either AR-3 or AR-5 showed significant protection of the mice from lipopolysaccharide (LPS)-induced bone destruction and osteoclast formation. In particular, AR-5 suppressed RANKL-induced phosphorylation of JNK and ERK mitogen-activated protein kinases (MAPKs). The results suggest that AR-3 and AR-5 attenuate osteoclast formation in vitro and in vivo by suppressing RANKL-mediated MAPKs and NFATc1 signaling pathways and could potentially be lead compounds for the prevention or treatment of osteolytic bone diseases.


Subject(s)
Bone Resorption , Lipopolysaccharides/toxicity , MAP Kinase Signaling System/drug effects , Oleanolic Acid/analogs & derivatives , Osteoclasts , RANK Ligand/metabolism , Animals , Bone Resorption/chemically induced , Bone Resorption/drug therapy , Bone Resorption/metabolism , Bone Resorption/pathology , Mice , Mice, Inbred ICR , Oleanolic Acid/pharmacology , Osteoclasts/metabolism , Osteoclasts/pathology , RAW 264.7 Cells
19.
Int J Mol Sci ; 21(5)2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32131547

ABSTRACT

Tumor cell resistance to anti-cancer drugs is a major obstacle in tumor therapy. In this study, we investigated the mechanism of cordycepin-mediated resensitization to cisplatin in T24R2 cells, a T24-derived cell line. Treatment with cordycepin or cisplatin (2 µg/mL) alone failed to induce cell death in T24R2 cells, but combination treatment with these drugs significantly induced apoptosis through mitochondrial pathways, including depolarization of mitochondrial membranes, decrease in anti-apoptotic proteins Bcl-2, Bcl-xL, and Mcl-1, and increase in pro-apoptotic proteins Bak and Bax. High expression levels of MDR1 were the cause of cisplatin resistance in T24R2 cells, and cordycepin significantly reduced MDR1 expression through inhibition of MDR1 promoter activity. MDR1 promoter activity was dependent on transcription factor Ets-1 in T24R2 cells. Although correlation exists between MDR1 and Ets-1 expression in bladder cancer patients, active Ets-1, Thr38 phosphorylated form (pThr38), was critical to induce MDR1 expression. Cordycepin decreased pThr-38 Ets-1 levels and reduced MDR1 transcription, probably through its effects on PI3K signaling, inducing the resensitization of T24R2 cells to cisplatin. The results suggest that cordycepin effectively resensitizes cisplatin-resistant bladder cancer cells to cisplatin, thus serving as a potential strategy for treatment of cancer in patients with resistance to anti-cancer drugs.


Subject(s)
Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , Deoxyadenosines/pharmacology , Drug Resistance, Neoplasm , Urinary Bladder Neoplasms/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Cell Death/drug effects , Cell Line, Tumor , Drug Interactions , Humans , Proto-Oncogene Protein c-ets-1/metabolism
20.
Int J Mol Sci ; 21(4)2020 Feb 14.
Article in English | MEDLINE | ID: mdl-32075108

ABSTRACT

Apoptosis pathways in cells are classified into two pathways: the extrinsic pathway, mediated by binding of the ligand to a death receptor and the intrinsic pathway, mediated by mitochondria. Apoptosis is regulated by various proteins such as Bcl-2 (B-cell lymphoma 2) family and cellular FLICE (Fas-associated Death Domain Protein Interleukin-1ß-converting enzyme)-inhibitory protein (c-FLIP), which have been reported to inhibit caspase-8 activity. In this study, it was found that C5 (3ß-Acetyl-nor-erythrophlamide), a compound of cassaine diterpene amine from Erythrophleum fordii, induced cell apoptosis in a variety of types of cancer cells. Induction of apoptosis in cancer cells by C5 was inversely related to the level of Bcl-2 expression. Overexpression of Bcl-2 into cancer cells significantly decreased C5-induced apoptosis. It was also found that treatment of cancer cells with a caspase-8 inhibitor significantly suppressed C5-induced apoptosis; however, treatment with caspase-9 inhibitors did not affect C5-induced apoptosis, suggesting that C5 may induce apoptosis via the extrinsic pathway by activating caspase-8. It was confirmed that treatment with C5 alone induced an association of FADD with procaspase-8; however, overexpression of c-FLIP decreased C5-induced caspase-8 activation. In conclusion, C5 could be utilized as a new useful lead compound for the development of an anti-cancer agent that has the goal of apoptosis.


Subject(s)
Alkaloids/pharmacology , Apoptosis/drug effects , Alkaloids/chemistry , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Caspase 8/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Fabaceae/chemistry , Fabaceae/metabolism , Fas-Associated Death Domain Protein/metabolism , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lymphoma/metabolism , Lymphoma/pathology , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...