ABSTRACT
BACKGROUND: Melanoma brain metastases (MBM) occur in up to 50% of patients with metastatic melanoma (MM) and represent a frequent site of systemic treatment failure for targeted therapies. However, to the authors' knowledge, little is known regarding the incidence, patterns of disease progression, and outcomes of MBM in patients treated with anti-PD-1 immunotherapy. METHODS: A total of 320 patients with MM who were treated with anti-PD-1 at The University of Texas MD Anderson Cancer Center in Houston were reviewed. Analyses were performed to identify factors associated with brain metastasis-free survival and overall survival (OS) using Cox regression models. RESULTS: The median age of the patients was 63.3 years. OS from the initiation of anti-PD-1 therapy was not significantly different between patients without MBM prior to anti-PD-1 compared with patients with prior MBM (P = .359). Among patients without prior MBM, 21 patients (8.6%) developed MBM during anti-PD-1 therapy, 12 of whom (4.9%) presented with disease progression in the central nervous system (CNS) only. Developing MBM during or after therapy with anti-PD-1 (hazard ratio, 4.70; 95% CI, 3.18-6.93) was associated with shorter OS. Among patients with MBM prior to anti-PD-1 treatment, 15 (20.0%) progressed in the CNS only and 19 (25.3%) progressed both intracranially and extracranially; at the time of the last data cutoff, 27 patients (36.0%) had not developed disease progression. Radiation necrosis occurred in 11.3% of patients (7 of 62 patients) in the group with a prior MBM who received stereotactic radiosurgery. CONCLUSIONS: Anti-PD-1 therapy may change the natural history of patients with preexisting MBM. However, CNS failure during treatment with anti-PD-1 is predictive of a worse prognosis compared with extracranial progression. The results of the current study support the activity of anti-PD-1 in patients with MBM, although routine CNS imaging during therapy is warranted.
Subject(s)
Brain Neoplasms/secondary , Immunotherapy/methods , Melanoma/drug therapy , Disease Progression , Female , Humans , Incidence , Male , Melanoma/complications , Melanoma/pathology , Middle Aged , Neoplasm Metastasis , Treatment OutcomeABSTRACT
PURPOSE: Parallel activation of the phosphatidylinositol 3-kinase-mammalian target of rapamycin pathway represents a mechanism of primary and acquired resistance to BRAF-targeted therapy, but the two pathways have yet to be cotargeted in humans. We performed a phase I study to evaluate the safety and activity of the BRAF inhibitor vemurafenib in combination with the mammalian target of rapamycin inhibitor everolimus in BRAF-mutated advanced solid tumors. PATIENTS AND METHODS: We performed a 3+3 dose-escalation study with escalating doses of both oral (PO) vemurafenib administered twice a day and PO everolimus administered daily. RESULTS: Twenty patients with advanced cancers were enrolled. The median adult age was 64 years (range, 17 to 85 years); two pediatric patients were 10 and 13 years old. Patients were heavily pretreated with prior BRAF or MEK inhibitors (n = 11), phase I clinical trial therapy (n = 10), surgery (n = 18), radiation therapy (n = 11), and chemotherapy (n=13). One of the two pediatric patients initially experienced grade 3 rash, but after dermatologic intervention, the patient remains on trial with partial response and no dose reduction at time of analysis. Four dose-limiting toxicities (rash, n = 1; fatigue, n = 3) were observed at dose level 2. Therefore, dose level 1 (vemurafenib 720 mg PO twice a day and everolimus 5 mg PO daily) was the maximum-tolerated dose. Overall, four patients (22%) had a partial response and nine patients (50%) had stable disease as best response. One pediatric patient with pleomorphic xanthroastrocytoma remains on protocol with continued clinical response after 38 cycles. CONCLUSION: The combination of vemurafenib 720 mg PO twice a day and everolimus 5 mg PO daily is safe and well tolerated and has activity across histologies, with partial responses noted in advanced non-small-cell lung cancer, melanoma, optic nerve glioma, and xanthroastrocytoma, including patients who previously experienced progression on BRAF and/or MEK inhibitor therapy. Further investigation in a larger cohort of molecularly matched patients is warranted.