Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Micromachines (Basel) ; 14(7)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37512732

ABSTRACT

This study investigated the partitioning characteristics of red blood cells (RBCs) within capillaries, with a specific focus on ladder structures observed near the end of the capillaries. In vitro experiments were conducted using microfluidic channels with a ladder structure model comprising six bifurcating channels that exhibited an anti-parallel flow configuration. The effects of various factors, such as the parent channel width, distance between branches, and hematocrit, on RBC partitioning in bifurcating channels were evaluated. A decrease in the parent channel width resulted in an increase in the heterogeneity in the hematocrit distribution and a bias in the fractional RBC flux. Additionally, variations in the distance between branches affected the RBC distribution, with smaller distances resulting in greater heterogeneity. The bias of the RBC distribution in the microchannel cross section had a major effect on the RBC partitioning characteristics. The influence of hematocrit variations on the RBC distribution was also investigated, with lower hematocrit values leading to a more pronounced bias in the RBC distribution. Overall, this study provides valuable insights into RBC distribution characteristics in capillary networks, contributing to our understanding of the physiological mechanisms of RBC phase separation in the microcirculatory system. These findings have implications for predicting oxygen heterogeneity in tissues and could aid in the study of diseases associated with impaired microcirculation.

2.
Microvasc Res ; 140: 104281, 2022 03.
Article in English | MEDLINE | ID: mdl-34871649

ABSTRACT

To investigate the partitioning properties of red blood cells (RBCs) in the bifurcating capillary vessels, an in vitro experiment was performed to perfuse human RBC suspensions into the microfluidic channels with a width of <10 µm. Two types of microchannel geometries were established. One is a single model comprising one parent and two daughter channels with different widths, and the other is a network model that had a symmetric geometry with four consecutive divergences and convergences. In addition to the fractional RBC flux at each bifurcation, changes in hematocrit levels and flow velocity before and after the bifurcation were investigated. In the single model, non-uniform partitioning of RBCs was observed, and this result was in good agreement with that of the empirical model. Furthermore, in the network model, the RBC distribution in the cross-section before the bifurcation significantly affected RBC partitioning in the two channels after the bifurcation. Hence, there was a large RBC heterogeneity in the capillary network. The hematocrit levels between the channels differed for more than one order of magnitude. Therefore, the findings of the current research could facilitate a better understanding of RBC partitioning properties in the microcirculatory system.


Subject(s)
Capillaries/physiology , Erythrocytes/physiology , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/instrumentation , Models, Cardiovascular , Capillaries/anatomy & histology , Hematocrit , Microcirculation
3.
ASAIO J ; 67(12): 1269-1276, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34860183

ABSTRACT

A conventional arteriovenous graft in patients on dialysis often leads to anastomotic stenosis, which decreases the blood flow rate and increases the risk of complications. In this study, based on hydrodynamics, the pulsatile pressure at the blood vessel graft-vein junction was investigated experimentally and numerically for revealing the causes of stenosis formation and inward remodeling. In the experiments, the pulsatile pressure and displacement at the anastomotic connection were measured at a branched collapsible tube. It was revealed that the pressure becomes negative between pressure peaks of the pulsatile flow; furthermore, tube diameter changes in accordance with the pressure pulsation. Subsequently, numerical simulations revealed that a relatively large pressure difference occurs at the anastomotic connection because of flow collision and separation as compared with the other part, and the pulsatile pressure. Therefore, it is possible that vein at an anastomotic connection may change its shape under pulsating flow. Furthermore, it was found that the pressure difference slightly increased with the anastomosis angle, but the anastomosis angle did not affect the flow rate. Clinical trials in the next step are required to reveal the causal relationship between stenosis and the pulsatile pressure, but the pulsatile flow and its pressure are likely to be one factor in stenosis and inward remodeling.


Subject(s)
Arteriovenous Shunt, Surgical , Hydrodynamics , Anastomosis, Surgical/adverse effects , Arteriovenous Shunt, Surgical/adverse effects , Blood Flow Velocity , Constriction, Pathologic/etiology , Humans , Renal Dialysis/adverse effects
4.
J Biomech ; 118: 110290, 2021 03 30.
Article in English | MEDLINE | ID: mdl-33581442

ABSTRACT

The navigation mechanism of mammalian sperm in the female reproductive tract is unclear owing to its complex process. This study performed an in vitro experiment using the microfluidic channel with two reservoirs to investigate the effect of fluid flow on the swimming properties of the bovine sperm. The width and height of the manufactured channel were 200 and 20 µm, respectively. The flow in the microchannel occurs because of the hydraulic head difference between the two reservoirs. Sperm with positive rheotaxis proceed in the opposite direction of the flow in the channel after swimming up the downstream reservoir. This study focused on the effect of the flow in the microfluidic channel on sperm motility. It was observed that sperm mostly moved along the channel wall and accumulated near the wall away from the downstream reservoir. The existence of fluid flow in the channel brought about an increase in the ratio of the sperm with positive rheotaxis. Furthermore, the experimental results indicated that the motility of sperm swimming against the flow along the wall increased away from the downstream reservoir. These results will provide useful information to understand the mechanism of sperm navigation for in vivo fertilization.


Subject(s)
Microfluidics , Sperm Motility , Animals , Cattle , Female , Humans , Hydrodynamics , Male , Mammals , Spermatozoa
5.
J Biomech ; 88: 130-137, 2019 May 09.
Article in English | MEDLINE | ID: mdl-30954248

ABSTRACT

To elucidate the process whereby sperm arrive at an egg in the female reproductive organs, it is essential to investigate how rheological properties of the fluid around mammalian spermatozoa affect their motility. We examined the motility and flagellar waveform of bovine sperm swimming in a fluid with similar rheological properties as mammalian cervical mucus. The results indicated that the surrounding rheological properties largely affected the flagellar waveform of mammalian spermatozoa; in particular, shear-thinning viscoelastic fluid increased the progressive motility of the sperm. To investigate the influence of flagellar waveform on sperm motility in more detail, the waveform was expressed as a function and the progressive thrust of the sperm was calculated based on the empirical resistive force theory. The results of this study showed that the progressive thrust increased with the curvature of the flagellar tip. Moreover, we calculated the thrust efficiency of motile sperm. Results showed that the thrust efficiency in shear-thinning viscoelastic fluids was larger than that in Newtonian fluids, regardless of viscosity. This suggests that motile sperm in cervical mucus move efficiently by means of a motion mechanism that is suited to their surrounding environment.


Subject(s)
Sperm Motility , Algorithms , Animals , Cattle , Elasticity , Male , Motion , Rheology , Spermatozoa/physiology , Viscosity
6.
J Biomech ; 71: 183-189, 2018 04 11.
Article in English | MEDLINE | ID: mdl-29459071

ABSTRACT

Mammalian spermatozoa in organisms with internal fertilization are required to swim in the cervical and oviductal mucus, whose rheological properties differ substantially from those of water. Moreover, on the way to the oviduct, a change in sperm motility called hyperactivation may occur. In the present study, we focused on the motion characteristics of hyperactivated bovine sperm and investigated the effect of the surrounding fluid on motility. We prepared two kinds of polyacrylamide with high-viscosity non-Newtonian fluid properties, similar to the actual cervical and oviductal mucus. Using semen from Japanese cattle, we evaluated curvilinear velocity (VCL), straight-line velocity (VSL), and average path velocity (VAP). Additionally, we estimated linearity (LIN), straightness (STR), and wobble (WOB) as sperm motility parameters for several surrounding fluids. We successfully induced hyperactivation of bovine sperm in high-viscosity non-Newtonian fluid. Hyperactivation resulted in an increase in VCL and a decrease in VSL. In the high-viscosity non-Newtonian fluid, the hyperactivated sperm moved in a zig-zag pattern with regularity, different from the movement observed in a diluted solution. The increase in WOB in the non-Newtonian fluid suggests that hyperactivated sperm efficiently progress along the groove that exists on the oviductal mucus wall. These results improve our understanding of the motility of bovine sperm when they undergo hyperactivation in the actual cervical and oviductal mucus.


Subject(s)
Mucus/physiology , Sperm Motility/physiology , Spermatozoa/physiology , Animals , Cattle , Male , Viscosity
7.
J Artif Organs ; 20(4): 341-349, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28755016

ABSTRACT

The small size of hemoglobin-based oxygen carriers (HBOCs) may expand the realm of new treatment possibilities for various circulatory diseases. The parametric evaluation of HBOC performance for oxygen transport within tissue is essential for effectively characterizing its performance for each circulatory disease assessed. Thus, the overarching objective of this present study was to numerically investigate the reaction-diffusion phenomenon of oxygenated HBOCs and oxygen on tissues through microvessels. We considered dissociation rate coefficients, oxygen affinity, and diffusion coefficients due to Brownian motion as the biophysical parameters for estimating HBOC performance for oxygen transport. A two-dimensional computational domain, including vessel and tissue regions, was, therefore, accordingly assumed. It was observed that HBOC flows in a microvessel with a diameter of 25 µm and a length of 1 mm, and that the dissociated oxygen diffuses to the tissue region. The results indicated that oxyhemoglobin saturation and partial oxygen tension in a downstream region changed according to each biophysical parameter of HBOC. Moreover, the change in oxygen consumption rate in the tissue region had considerable influence on the oxyhemoglobin saturation level within the vessel. Comparison between simulation results and existing in vitro experimental data of actual HBOCs and RBC showed qualitatively good agreement. These results provide important information for the effective design of robust HBOCs in future.


Subject(s)
Drug Design , Hemoglobins/physiology , Microvessels/physiology , Models, Biological , Oxygen/physiology , Humans , Oxygen Consumption
8.
J Artif Organs ; 19(4): 322-329, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27370698

ABSTRACT

An impeller the same geometry as the impeller of a commercial monopivot cardiopulmonary bypass pump was manufactured using 3D printing. The 3D-printed impeller was integrated into the pump casing of the commercially available pump to form a 3D-printed pump model. The surface roughness of the impeller, the hydraulic performance, the axial displacement of the rotating impeller, and the hemolytic properties of the 3D-printed model were measured and compared with those of the commercially available model. Although the surface roughness of the 3D-printed model was significantly larger than that of the commercially available model, the hydraulic performance of the two models almost coincided. The hemolysis level of the 3D-printed model roughly coincided with that of the commercially available model under low-pressure head conditions, but increased greatly under high-pressure head conditions, as a result of the narrow gap between the rotating impeller and the pump casing. The gap became narrow under high-pressure head conditions, because the axial thrust applied to the impeller increased with increasing impeller rotational speed. Moreover, the axial displacement of the rotating impeller was twice that of the commercially available model, confirming that the elastic deformation of the 3D-printed impeller was larger than that of the commercially available impeller. These results suggest that trial models manufactured by 3D printing can reproduce the hydraulic performance of the commercial product. However, both the surface roughness and the deformation of the trial models must be considered to precisely evaluate the hemolytic properties of the model.


Subject(s)
Heart-Assist Devices , Printing, Three-Dimensional , Cardiopulmonary Bypass , Equipment Design , Hemolysis , Hemorheology , Humans , Pressure
9.
J Biomech ; 48(12): 2941-7, 2015 Sep 18.
Article in English | MEDLINE | ID: mdl-26277700

ABSTRACT

The swimming process by which mammal spermatozoa progress towards an egg within the reproductive organs is important in achieving successful internal fertilization. The viscosity of oviductal mucus is more than two orders of magnitude greater than that of water, and oviductal mucus also has non-Newtonian properties. In this study, we experimentally observed sperm motion in fluids with various fluid rheological properties and investigated the influence of varying the viscosity and whether the fluid was Newtonian or non-Newtonian on the sperm motility. We selected polyvinylpyrrolidone and methylcellulose as solutes to create solutions with different rheological properties. We used the semen of Japanese cattle and investigated the following parameters: the sperm velocity, the straight-line velocity and the amplitude from the trajectory, and the beat frequency from the fragellar movement. In a Newtonian fluid environment, as the viscosity increased, the motility of the sperm decreased. However, in a non-Newtonian fluid, the straight-line velocity and beat frequency were significantly higher than in a Newtonian fluid with comparable viscosity. As a result, the linearity of the sperm movement increased. Additionally, increasing the viscosity brought about large changes in the sperm flagellar shape. At low viscosities, the entire flagellum moved in a curved flapping motion, whereas in the high-viscosity, only the tip of the flagellum flapped. These results suggest that the bovine sperm has evolved to swim toward the egg as quickly as possible in the actual oviduct fluid, which is a high-viscosity non-Newtonian fluid.


Subject(s)
Hydrodynamics , Sperm Motility , Animals , Body Fluids/metabolism , Cattle , Male , Movement , Spermatozoa/cytology , Viscosity
10.
Microvasc Res ; 97: 115-23, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25446286

ABSTRACT

We constructed three-dimensional microvascular bifurcation models using a parent vessel of diameter 10µm and investigated the flow behavior of the red blood cells (RBCs) through bifurcations. We considered symmetric and asymmetric model types. Two cases of equal daughter vessel diameter were employed for the asymmetric models, where the first was 10µm, which is the same as the parent vessel and the second was 7.94µm, which satisfies Murray's law. Simulated blood flow was computed using the lattice Boltzmann method in conjunction with the immersed boundary method for incorporating fluid-membrane interactions between the flow field and deformable RBCs. First, we investigated the flow behavior of a single RBC through microvascular bifurcations. In the case of the symmetric bifurcation, the turning point of the fractional plasma flow wherein the RBC flow changed from one daughter vessel to the other was 0.50. This turning point was however different for asymmetric bifurcations. Additionally, we varied the initial offset of RBCs from the centerline of the parent vessel. The simulation results indicated that the RBCs preferentially flow through the branch of a larger flow ratio. Next, we investigated the distribution characteristics of multiple RBCs. Simulations indicated that the results of the symmetric model were similar to those predicted by a previously published empirical model. On the other hand, results of asymmetric models deviated from those of the symmetric and empirical models. These results suggest that the distribution of RBCs varies according to the bifurcation angle and daughter vessel diameter in a microvascular bifurcation of the size considered.


Subject(s)
Computer Simulation , Erythrocytes/physiology , Hemorheology , Microcirculation , Microvessels/physiology , Models, Cardiovascular , Numerical Analysis, Computer-Assisted , Animals , Blood Flow Velocity , Humans , Microvessels/anatomy & histology , Regional Blood Flow
11.
Reprod Biomed Online ; 24(1): 109-15, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22116072

ABSTRACT

The microfluidic sperm-sorting (MFSS) device is a promising advancement for assisted reproductive technology. Previously, poly(dimethylsiloxiane) and quartz MFSS devices were developed and used for intracytoplasmic sperm injection. However, these disposable devices were not clinically suitable for assisted reproduction, so a cyclo-olefin polymer MFSS (COP-MFSS) device was developed. By micromachining, two microfluidic channels with different heights and widths (chip A: 0.3 × 0.5 mm; chip B: 0.1 × 0.6 mm) were prepared. Sorted sperm concentrations were similar in both microfluidic channels. Linear-velocity distribution using the microfluidic channel of chip B was higher than that of chip A. Using confocal fluorescence microscopy, it was found that the highest number of motile spermatozoa swam across the laminar flow at the bottom of the microfluidic channel. The time required to swim across the laminar flow was longer at the bottom and top of the microfluidic channels than in the middle because of the low fluid velocity. These results experimentally demonstrated that the width of microfluidic channels should be increased in the region of laminar flow from the semen inlet to the outlet for unsorted spermatozoa to selectively recover spermatozoa with high linear velocity.


Subject(s)
Alkenes/chemistry , Microfluidic Analytical Techniques/instrumentation , Polymers/chemistry , Spermatozoa/pathology , Adult , Cell Separation/methods , Dimethylpolysiloxanes/chemistry , Equipment Design , Humans , Male , Microscopy, Confocal/methods , Sperm Motility , Time Factors
12.
J Biomech ; 42(7): 824-9, 2009 May 11.
Article in English | MEDLINE | ID: mdl-19269641

ABSTRACT

Self-excited oscillation of the vocal folds produces a source sound of the human voiced speech. The mechanism of the self-excitation remains elusive partly because characteristics of the flow in rapidly oscillating vocal folds are unclear. This paper deals with theoretical considerations of the flow behavior in oscillating constriction based on general flow equations. The cause-and-effect relationships between time-varying glottal width and physical variables such as glottal pressure, velocity, and volume flow are analytically derived as functions of oscillatory frequency through perturbation analysis. The result shows that the unsteady effect due to convective acceleration of vocal fold wall-induced flow becomes comparable in magnitude to the Bernoulli effect at a high but physiological frequency of phonation. Consequently, a phase difference between the vocal fold motion and glottal pressure appears, enabling self-excited oscillation. The phase-lead of the pressure compared to wall motion is described as a monotonically increasing function of the Strouhal number. The above two effects essentially play the dominant role in the glottal flow. These explicit descriptions containing flow-related variables are useful for understanding of the glottal aerodynamics particularly at high frequency range of the falsetto voice register.


Subject(s)
Vocal Cords/physiology , Humans , Models, Biological
13.
Biomed Microdevices ; 11(1): 25-33, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18815887

ABSTRACT

This paper describes a study in which numerical simulations were applied to improve the separation efficiency of a microfluidic-based sperm sorter. Initially, the motion of 31 sperm were modeled as a sinusoidal wave. The modeled sperm were expected to move while vibrating in the fluid within the microchannel. In this analysis, the number of sperm extracted at the outlet channel and the rate of movement of the highly motile sperm were obtained for a wide range of flow velocities within the microchannel. By varying the channel height, and the width and the position of the sperm-inlet channel, we confirmed that the separation efficiency was highly dependent on the fluid velocity within the channel. These results will be valuable for improving the device configuration, and might help to realize further improvements in efficiency in the future.


Subject(s)
Cell Movement/physiology , Flow Cytometry/methods , Models, Biological , Spermatozoa/cytology , Spermatozoa/physiology , Animals , Cell Separation/methods , Humans , Male
14.
J Biomech Eng ; 130(1): 011014, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18298190

ABSTRACT

Flow analysis at microvascular bifurcation after partial replacement of red blood cell (RBC) with liposome-encapsulated hemoglobin (LEH) was performed using the lattice Boltzmann method. A two-dimensional symmetric Y bifurcation model with a parent vessel diameter of 20 mum and daughter branch diameters of 20 microm was considered, and the distributions of the RBC, LEH, and oxygen fluxes were calculated. When only RBCs flow into the daughter branches with unevenly distributed flows, plasma separation occurred and the RBC flow to the lower-flow branch was disproportionately decreased. On the other hand, when half of RBC are replaced by LEH, the biasing of RBC flow was enhanced whereas LEH flowed favorably into the lower-flow branch, because many LEH within the parent vessel are suspended in the plasma layer, where no RBCs exist. Consequently, the branched oxygen fluxes became nearly proportional to flows. These results indicate that LEH facilitates oxygen supply to branches that are inaccessible to RBCs.


Subject(s)
Blood Substitutes , Cell Movement/physiology , Erythrocytes/physiology , Hemoglobins/physiology , Liposomes/chemistry , Microcirculation/physiology , Models, Cardiovascular , Computer Simulation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...