Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658758

ABSTRACT

The tokamak approach, utilizing a toroidal magnetic field configuration to confine a hot plasma, is one of the most promising designs for developing reactors that can exploit nuclear fusion to generate electrical energy1,2. To reach the goal of an economical reactor, most tokamak reactor designs3-10 simultaneously require reaching a plasma line-averaged density above an empirical limit-the so-called Greenwald density11-and attaining an energy confinement quality better than the standard high-confinement mode12,13. However, such an operating regime has never been verified in experiments. In addition, a long-standing challenge in the high-confinement mode has been the compatibility between a high-performance core and avoiding large, transient edge perturbations that can cause very high heat loads on the plasma-facing-components in tokamaks. Here we report the demonstration of stable tokamak plasmas with a line-averaged density approximately 20% above the Greenwald density and an energy confinement quality of approximately 50% better than the standard high-confinement mode, which was realized by taking advantage of the enhanced suppression of turbulent transport granted by high density-gradients in the high-poloidal-beta scenario14,15. Furthermore, our experimental results show an integration of very low edge transient perturbations with the high normalized density and confinement core. The operating regime we report supports some critical requirements in many fusion reactor designs all over the world and opens a potential avenue to an operating point for producing economically attractive fusion energy.

2.
Nat Commun ; 12(1): 1365, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33649306

ABSTRACT

Divertor detachment offers a promising solution to the challenge of plasma-wall interactions for steady-state operation of fusion reactors. Here, we demonstrate the excellent compatibility of actively controlled full divertor detachment with a high-performance (ßN ~ 3, H98 ~ 1.5) core plasma, using high-ßp (poloidal beta, ßp > 2) scenario characterized by a sustained core internal transport barrier (ITB) and a modest edge transport barrier (ETB) in DIII-D tokamak. The high-ßp high-confinement scenario facilitates divertor detachment which, in turn, promotes the development of an even stronger ITB at large radius with a weaker ETB. This self-organized synergy between ITB and ETB, leads to a net gain in energy confinement, in contrast to the net confinement loss caused by divertor detachment in standard H-modes. These results show the potential of integrating excellent core plasma performance with an efficient divertor solution, an essential step towards steady-state operation of reactor-grade plasmas.

3.
Phys Rev Lett ; 122(11): 115001, 2019 Mar 22.
Article in English | MEDLINE | ID: mdl-30951344

ABSTRACT

Plasma discharges with a negative triangularity (δ=-0.4) shape have been created in the DIII-D tokamak with a significant normalized beta (ß_{N}=2.7) and confinement characteristic of the high confinement mode (H_{98y2}=1.2) despite the absence of an edge pressure pedestal and no edge localized modes (ELMs). These inner-wall-limited plasmas have a similar global performance as a positive triangularity (δ=+0.4) ELMing H-mode discharge with the same plasma current, elongation and cross sectional area. For cases both of dominant electron cyclotron heating with T_{e}/T_{i}>1 and dominant neutral beam injection heating with T_{e}/T_{i}=1, turbulent fluctuations over radii 0.5<ρ<0.9 were reduced by 10-50% in the negative triangularity shape compared to the matching positive triangularity shape, depending on the radius and conditions.

4.
Rev Sci Instrum ; 87(11): 11E517, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910589

ABSTRACT

Thomson scattering produces ne profiles from measurement of scattered laser beam intensity. Rayleigh scattering provides a first calibration of the relation ne ∝ ITS, which depends on many factors (e.g., laser alignment and power, optics, and measurement systems). On DIII-D, the ne calibration is adjusted against an absolute ne from the density-driven cutoff of the 48 channel 2nd harmonic X-mode electron cyclotron emission system. This method has been used to calibrate Thomson ne from the edge to near the core (r/a > 0.15). Application of core electron cyclotron heating improves the quality of cutoff and depth of its penetration into the core, and also changes underlying MHD activity, minimizing crashes which confound calibration. Less fueling is needed as "ECH pump-out" generates a plasma ready to take up gas. On removal of gyrotron power, cutoff penetrates into the core as channels fall successively and smoothly into cutoff.

5.
Phys Rev Lett ; 113(4): 045003, 2014 Jul 25.
Article in English | MEDLINE | ID: mdl-25105626

ABSTRACT

Magnetic feedback control of the resistive-wall mode has enabled the DIII-D tokamak to access stable operation at safety factor q(95) = 1.9 in divertor plasmas for 150 instability growth times. Magnetohydrodynamic stability sets a hard, disruptive limit on the minimum edge safety factor achievable in a tokamak, or on the maximum plasma current at a given toroidal magnetic field. In tokamaks with a divertor, the limit occurs at q(95) = 2, as confirmed in DIII-D. Since the energy confinement time scales linearly with current, this also bounds the performance of a fusion reactor. DIII-D has overcome this limit, opening a whole new high-current regime not accessible before. This result brings significant possible benefits in terms of fusion performance, but it also extends resistive-wall mode physics and its control to conditions never explored before. In present experiments, the q(95) < 2 operation is eventually halted by voltage limits reached in the feedback power supplies, not by intrinsic physics issues. Improvements to power supplies and to control algorithms have the potential to further extend this regime.

6.
Rev Sci Instrum ; 79(10): 10F303, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19044616

ABSTRACT

Dust production and accumulation present potential safety and operational issues for the ITER. Dust diagnostics can be divided into two groups: diagnostics of dust on surfaces and diagnostics of dust in plasma. Diagnostics from both groups are employed in contemporary tokamaks; new diagnostics suitable for ITER are also being developed and tested. Dust accumulation in ITER is likely to occur in hidden areas, e.g., between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In the DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering is able to resolve particles between 0.16 and 1.6 microm in diameter; using these data the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in two-dimension with a single camera or three-dimension using multiple cameras, but determination of particle size is challenging. In order to calibrate diagnostics and benchmark dust dynamics modeling, precharacterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase in carbon line (CI, CII, C(2) dimer) and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.

7.
Phys Rev Lett ; 89(5): 055001, 2002 Jul 29.
Article in English | MEDLINE | ID: mdl-12144446

ABSTRACT

High-pressure gas-jet injection of neon and argon is shown to be a simple and robust method to mitigate the deleterious effects of disruptions on the DIII-D tokamak. The gas jet penetrates to the central plasma at its sonic velocity. The deposited species dissipates >95% of the plasma by radiation and substantially reduces mechanical stresses on the vessel caused by poloidal halo currents. The gas-jet species-charge distribution can include >50% fraction neutral species which inhibits runaway electrons. The favorable scaling of this technique to burning fusion plasmas is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...