Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Inorganica Chim Acta ; 380: 125-134, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22287796

ABSTRACT

Described here is the development of two boronic ester-based fluorescent prochelators, FloB (2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)-4(5)-[2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-benzylidene-hydrazinocarbonyl]-benzoic acid) and FloB-SI (2-(6-hydroxy-3-oxo-3Hxanthen-9-yl)-4(5)-[2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyloxy)-benzylidene-hydrazinocarbonyl]-benzoic acid) that show a fluorescence response to a variety of transition metal ions only after reaction with H(2)O(2). Both prochelators' boronic ester masks are oxidized by H(2)O(2) to reveal a fluorescein-tagged metal chelator, FloS (4(5)-(2-hydroxy-benzylidenehydrazinocarbonyl)-2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)-benzoic acid). Chelation of Fe(3+) or Cu(2+) elicits a 70% decrease in the emission signal of FloS, while Zn(2+), Ni(2+), and Co(2+) produce a more modest fluorescence decrease. The conversion of FloB to FloS proceeds in organic solvents, but hydrolytic decomposition of its hydrazone backbone is observed in aqueous solution. However, FloB-SI oxidizes cleanly with H(2)O(2) within 1 h in aqueous solutions to produce FloS. Fluorescence microscopy studies in HeLa cells with FloB-SI show that the sensor's fluorescence intensity remains unchanged until incubation with exogenous H(2)O(2), which results in a decreased fluorescent signal. Incubation with a competitive chelator restores the emission response, thus suggesting that FloB-SI can effectively report on a H(2)O(2)-induced increase in intracellular labilized metal.

2.
Coord Chem Rev ; 256(19-20): 2333-2356, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-23440254

ABSTRACT

Oxidative stress is a common feature shared by many diseases, including neurodegenerative diseases. Factors that contribute to cellular oxidative stress include elevated levels of reactive oxygen species, diminished availability of detoxifying thiols, and the misregulation of metal ions (both redox-active iron and copper as well as non-redox active calcium and zinc). Deciphering how each of these components interacts to contribute to oxidative stress presents an interesting challenge. Fluorescent sensors can be powerful tools for detecting specific analytes within a complicated cellular environment. Reviewed here are several classes of small molecule fluorescent sensors designed to detect several molecular participants of oxidative stress. We focus our review on describing the design, function and application of probes to detect metal cations, reactive oxygen species, and intracellular thiol-containing compounds. In addition, we highlight the intricacies and complications that are often faced in sensor design and implementation.

4.
Dalton Trans ; (2): 568-76, 2010 Jan 14.
Article in English | MEDLINE | ID: mdl-20023995

ABSTRACT

A fluorescent sensor prochelator, FlamB (fluorescein hydrizido 2-imidophenylboronic ester), has been developed that selectively probes for copper under conditions of oxidative stress. High levels of hydrogen peroxide trigger the release of a boronic ester masking group from the prochelator to unveil a metal chelator, FlamS (fluorescein hydrizido 2-imidophenol), that provides a modest fluorescence increase in response to Cu(2+) but not other metal ions. X-Ray crystal structures of FlamB, FlamS, and Cu-bound FlamS are all reported. The fluorescence turn-on results from opening of a fluorescein spirolactam ring upon Cu(2+) binding to FlamS in aqueous solution. Oxidation of the aryl boronic ester of FlamB to the metal-binding phenol of FlamS proceeds in organic solvents. However, in aqueous solution a competing mechanism occurs due to hydrolytic instability of the masked prochelator. Hydrolysis of FlamB leads to formation of fluorescein hydrazide, which interacts with copper or H(2)O(2) to produce fluorescein and a significant fluorescence increase.


Subject(s)
Chelating Agents/chemistry , Copper/chemistry , Fluoresceins/chemistry , Fluorescent Dyes/chemistry , Oxidative Stress/drug effects , Crystallography, X-Ray , Fluoresceins/chemical synthesis , Molecular Conformation , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL