Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22279344

ABSTRACT

SARS-CoV-2 mRNA booster vaccines provide protection from severe disease, eliciting strong immunity that is further boosted by previous infection. However, it is unclear whether these immune responses are affected by the interval between infection and vaccination. Over a two-month period, we evaluated antibody and B-cell responses to a third dose mRNA vaccine in 66 individuals with different infection histories. Uninfected and post-boost but not previously infected individuals mounted robust ancestral and variant spike-binding and neutralizing antibodies, and memory B cells. Spike-specific B-cell responses from recent infection were elevated at pre-boost but comparatively less so at 60 days post-boost compared to uninfected individuals, and these differences were linked to baseline frequencies of CD27lo B cells. Day 60 to baseline ratio of BCR signaling measured by phosphorylation of Syk was inversely correlated to days between infection and vaccination. Thus, B-cell responses to booster vaccines are impeded by recent infection.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-486152

ABSTRACT

An important consequence of infection with a SARS-CoV-2 variant is protective humoral immunity against other variants. The basis for such cross-protection at the molecular level is incompletely understood. Here we characterized the repertoire and epitope specificity of antibodies elicited by Beta, Gamma and ancestral variant infection and assessed their cross-reactivity to these and the more recent Delta and Omicron variants. We developed a high-throughput approach to obtain immunoglobulin sequences and produce monoclonal antibodies for functional assessment from single B cells. Infection with any variant elicited similar cross-binding antibody responses exhibiting a remarkably conserved hierarchy of epitope immunodominance. Furthermore, convergent V gene usage and similar public B cell clones were elicited regardless of infecting variant. These convergent responses despite antigenic variation may represent a general immunological principle that accounts for the continued efficacy of vaccines based on a single ancestral variant.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-479037

ABSTRACT

SARS-CoV-2 Omicron is highly transmissible and has substantial resistance to antibody neutralization following immunization with ancestral spike-matched vaccines. It is unclear whether boosting with Omicron-specific vaccines would enhance immunity and protection. Here, nonhuman primates that received mRNA-1273 at weeks 0 and 4 were boosted at week 41 with mRNA-1273 or mRNA-Omicron. Neutralizing antibody titers against D614G were 4760 and 270 reciprocal ID50 at week 6 (peak) and week 41 (pre-boost), respectively, and 320 and 110 for Omicron. Two weeks after boost, titers against D614G and Omicron increased to 5360 and 2980, respectively, for mRNA-1273 and 2670 and 1930 for mRNA-Omicron. Following either boost, 70-80% of spike-specific B cells were cross-reactive against both WA1 and Omicron. Significant and equivalent control of virus replication in lower airways was observed following either boost. Therefore, an Omicron boost may not provide greater immunity or protection compared to a boost with the current mRNA-1273 vaccine.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-477770

ABSTRACT

Immunization with SARS-CoV-2 spike elicits diverse antibodies, but can any of these neutralize broadly? Here, we report the isolation and characterization of antibody WS6, from a mouse immunized with mRNA encoding the SARS-CoV-2 spike. WS6 bound diverse beta-coronavirus spikes and neutralized SARS-CoV-2 variants, SARS-CoV, and related sarbecoviruses. Epitope mapping revealed WS6 to target a region in the S2 subunit, which was conserved among SARS-CoV-2, MERS-CoV, and hCoV-OC43. The crystal structure at 2-[A] resolution of WS6 with its S2 epitope revealed recognition to center on a conserved helix, which was occluded in both prefusion and post-fusion spike conformations. Structural and neutralization analyses indicated WS6 to neutralize by inhibiting fusion, post-viral attachment. Comparison of WS6 to other antibodies recently identified from convalescent donors or mice immunized with diverse spikes indicated a stem-helical supersite - centered on hydrophobic residues Phe1148, Leu1152, Tyr1155, and Phe1156 - to be a promising target for vaccine design. HighlightsO_LISARS-CoV-2 spike mRNA-immunized mouse elicited an antibody, WS6, that cross reacts with spikes of diverse human and bat beta-coronaviruses C_LIO_LIWS6 neutralizes SARS-CoV-2 variants, SARS-CoV, and related viruses C_LIO_LICrystal structure at 2-[A] resolution of WS6 in complex with a conserved S2 peptide reveals recognition of a helical epitope C_LIO_LIWS6 neutralizes by inhibition of fusion, post-viral attachment C_LIO_LIWS6 recognizes a supersite of vulnerability also recognized by other recently identified antibodies C_LIO_LIHelical supersite of vulnerability comprises a hydrophobic cluster spanning three helical turns, with acid residues framing the center turn C_LIO_LIGenetic and structural analysis indicate supersite recognition to be compatible with diverse antibody ontogenies C_LI

5.
Preprint in English | bioRxiv | ID: ppbiorxiv-474491

ABSTRACT

Since the outbreak of the COVID-19 pandemic, widespread infections have allowed SARS-CoV-2 to evolve in human, leading to the emergence of multiple circulating variants. Some of these variants show increased resistance to vaccines, convalescent plasma, or monoclonal antibodies. In particular, mutations in the SARS-CoV-2 spike have drawn attention. To facilitate the isolation of neutralizing antibodies and the monitoring the vaccine effectiveness against these variants, we designed and produced biotin-labeled molecular probes of variant SARS-CoV-2 spikes and their subdomains, using a structure-based construct design that incorporated an N-terminal purification tag, a specific amino acid sequence for protease cleavage, the variant spike-based region of interest, and a C-terminal sequence targeted by biotin ligase. These probes could be produced by a single step using in-process biotinylation and purification. We characterized the physical properties and antigenicity of these probes, comprising the N-terminal domain (NTD), the receptor-binding domain (RBD), the RBD and subdomain 1 (RBD-SD1), and the prefusion-stabilized spike ectodomain (S2P) with sequences from SARS-CoV-2 variants of concern or of interest, including variants Alpha, Beta, Gamma, Epsilon, Iota, Kappa, Delta, Lambda, Mu, and Omicron. We functionally validated probes by using yeast expressing a panel of nine SARS-CoV-2 spike-binding antibodies and confirmed sorting capabilities of variant probes using yeast displaying libraries of plasma antibodies from COVID-19 convalescent donors. We deposited these constructs to Addgene to enable their dissemination. Overall, this study describes a matrix of SARS-CoV-2 variant molecular probes that allow for assessment of immune responses, identification of serum antibody specificity, and isolation and characterization of neutralizing antibodies.

6.
Preprint in English | bioRxiv | ID: ppbiorxiv-474307

ABSTRACT

With B.1.1.529 SARS-CoV-2 variants rapid spread and substantially increased resistance to neutralization by vaccinee and convalescent sera, monoclonal antibodies with potent neutralization are eagerly sought. To provide insight into effective neutralization, we determined cryo-EM structures and evaluated potent receptor-binding domain (RBD) antibodies for their ability to bind and neutralize this new variant. B.1.1.529 RBD mutations altered 16% of the RBD surface, clustering on a ridge of this domain proximal to the ACE2-binding surface and reducing binding of most antibodies. Significant inhibitory activity was retained, however, by select monoclonal antibodies including A19-58.1, B1-182.1, COV2-2196, S2E12, A19-46.1, S309 and LY-CoV1404, which accommodated these changes and neutralized B.1.1.529 with IC50s between 5.1-281 ng/ml, and we identified combinations of antibodies with potent synergistic neutralization. Structure-function analyses delineated the impact of resistance mutations and revealed structural mechanisms for maintenance of potent neutralization against emerging variants. Summary SentenceWe show potent B.1.1.529 neutralization by select antibodies and use EM structures to reveal how potency can be retained.

7.
Preprint in English | bioRxiv | ID: ppbiorxiv-433768

ABSTRACT

Since the start of the coronavirus disease-2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused more than 2 million deaths worldwide. Multiple vaccines have been deployed to date, but the continual evolution of the viral receptor-binding domain (RBD) has recently challenged their efficacy. In particular, SARS-CoV-2 variants originating in the U.K. (B.1.1.7), South Africa (B.1.351) and New York (B.1.526) have reduced neutralization activity from convalescent sera and compromised the efficacy of antibody cocktails that received emergency use authorization. Whereas vaccines can be updated periodically to account for emerging variants, complementary strategies are urgently needed to avert viral escape. One potential alternative is the use of camelid VHHs (also known as nanobodies), which due to their small size can recognize protein crevices that are inaccessible to conventional antibodies. Here, we isolate anti-RBD nanobodies from llamas and "nanomice" we engineered to produce VHHs cloned from alpacas, dromedaries and camels. Through binding assays and cryo-electron microscopy, we identified two sets of highly neutralizing nanobodies. The first group expresses VHHs that circumvent RBD antigenic drift by recognizing a region outside the ACE2-binding site that is conserved in coronaviruses but is not typically targeted by monoclonal antibodies. The second group is almost exclusively focused to the RBD-ACE2 interface and fails to neutralize pseudoviruses carrying the E484K or N501Y substitutions. Notably however, they do neutralize the RBD variants when expressed as homotrimers, rivaling the most potent antibodies produced to date against SARS-CoV-2. These findings demonstrate that multivalent nanobodies overcome SARS-CoV-2 variant mutations through two separate mechanisms: enhanced avidity for the ACE2 binding domain, and recognition of conserved epitopes largely inaccessible to human antibodies. Therefore, while new SARS-CoV-2 mutants will continue to emerge, nanobodies represent promising tools to prevent COVID-19 mortality when vaccines are compromised.

8.
Preprint in English | bioRxiv | ID: ppbiorxiv-433390

ABSTRACT

Adjuvanted soluble protein vaccines have been used extensively in humans for protection against various viral infections based on their robust induction of antibody responses. Here, soluble prefusion-stabilized spike trimers (preS dTM) from the severe acute respiratory syndrome coronavirus (SARS-CoV-2) were formulated with the adjuvant AS03 and administered twice to nonhuman primates (NHP). Binding and functional neutralization assays and systems serology revealed that NHP developed AS03-dependent multi-functional humoral responses that targeted multiple spike domains and bound to a variety of antibody FC receptors mediating effector functions in vitro. Pseudovirus and live virus neutralizing IC50 titers were on average greater than 1000 and significantly higher than a panel of human convalescent sera. NHP were challenged intranasally and intratracheally with a high dose (3x106 PFU) of SARS-CoV-2 (USA-WA1/2020 isolate). Two days post-challenge, vaccinated NHP showed rapid control of viral replication in both the upper and lower airways. Notably, vaccinated NHP also had increased spike-specific IgG antibody responses in the lung as early as 2 days post challenge. Moreover, vaccine-induced IgG mediated protection from SARS-CoV-2 challenge following passive transfer to hamsters. These data show that antibodies induced by the AS03-adjuvanted preS dTM vaccine are sufficient to mediate protection against SARS-CoV-2 and support the evaluation of this vaccine in human clinical trials.

9.
Preprint in English | bioRxiv | ID: ppbiorxiv-432969

ABSTRACT

The emergence of highly transmissible SARS-CoV-2 variants of concern (VOC) that are resistant to therapeutic antibodies highlights the need for continuing discovery of broadly reactive antibodies. We identify four receptor-binding domain targeting antibodies from three early-outbreak convalescent donors with potent neutralizing activity against 12 variants including the B.1.1.7 and B.1.351 VOCs. Two of them are ultrapotent, with sub-nanomolar neutralization titers (IC50 <0.0006 to 0.0102 g/mL; IC80 < 0.0006 to 0.0251 g/mL). We define the structural and functional determinants of binding for all four VOC-targeting antibodies, and show that combinations of two antibodies decrease the in vitro generation of escape mutants, suggesting potential means to mitigate resistance development. These results define the basis of therapeutic cocktails against VOCs and suggest that targeted boosting of existing immunity may increase vaccine breadth against VOCs. One Sentence SummaryUltrapotent antibodies from convalescent donors neutralize and mitigate resistance of SARS-CoV-2 variants of concern.

10.
Preprint in English | bioRxiv | ID: ppbiorxiv-424987

ABSTRACT

Understanding protective mechanisms of antibody recognition can inform vaccine and therapeutic strategies against SARS-CoV-2. We discovered a new antibody, 910-30, that targets the SARS-CoV-2 ACE2 receptor binding site as a member of a public antibody response encoded by IGHV3-53/IGHV3-66 genes. We performed sequence and structural analyses to explore how antibody features correlate with SARS-CoV-2 neutralization. Cryo-EM structures of 910-30 bound to the SARS-CoV-2 spike trimer revealed its binding interactions and ability to disassemble spike. Despite heavy chain sequence similarity, biophysical analyses of IGHV3-53/3-66 antibodies highlighted the importance of native heavy:light pairings for ACE2 binding competition and for SARS-CoV-2 neutralization. We defined paired heavy:light sequence signatures and determined antibody precursor prevalence to be ~1 in 44,000 human B cells, consistent with public antibody identification in several convalescent COVID-19 patients. These data reveal key structural and functional neutralization features in the IGHV3-53/3-66 public antibody class to accelerate antibody-based medical interventions against SARS-CoV-2. HighlightsO_LIA molecular study of IGHV3-53/3-66 public antibody responses reveals critical heavy and light chain features for potent neutralization C_LIO_LICryo-EM analyses detail the structure of a novel public antibody class member, antibody 910-30, in complex with SARS-CoV-2 spike trimer C_LIO_LICryo-EM data reveal that 910-30 can both bind assembled trimer and can disassemble the SARS-CoV-2 spike C_LIO_LISequence-structure-function signatures defined for IGHV3-53/3-66 class antibodies including both heavy and light chains C_LIO_LIIGHV3-53/3-66 class precursors have a prevalence of 1:44,000 B cells in healthy human antibody repertoires C_LI

11.
Preprint in English | bioRxiv | ID: ppbiorxiv-424729

ABSTRACT

SARS-CoV-2 neutralizing antibodies (NAbs) protect against COVID-19. A concern regarding SARS-CoV-2 antibodies is whether they mediate disease enhancement. Here, we isolated NAbs against the receptor-binding domain (RBD) and the N-terminal domain (NTD) of SARS-CoV-2 spike from individuals with acute or convalescent SARS-CoV-2 or a history of SARS-CoV-1 infection. Cryo-electron microscopy of RBD and NTD antibodies demonstrated function-specific modes of binding. Select RBD NAbs also demonstrated Fc receptor-{gamma} (Fc{gamma}R)-mediated enhancement of virus infection in vitro, while five non-neutralizing NTD antibodies mediated Fc{gamma}R-independent in vitro infection enhancement. However, both types of infection-enhancing antibodies protected from SARS-CoV-2 replication in monkeys and mice. Nonetheless, three of 31 monkeys infused with enhancing antibodies had higher lung inflammation scores compared to controls. One monkey had alveolar edema and elevated bronchoalveolar lavage inflammatory cytokines. Thus, while in vitro antibody-enhanced infection does not necessarily herald enhanced infection in vivo, increased lung inflammation can occur in SARS-CoV-2 antibody-infused macaques.

12.
Preprint in English | bioRxiv | ID: ppbiorxiv-187989

ABSTRACT

The SARS-CoV-2 spike employs mobile receptor-binding domains (RBDs) to engage the ACE2 receptor and to facilitate virus entry. Antibodies can engage RBD but some, such as CR3022, fail to inhibit entry despite nanomolar spike affinity. Here we show the SARS-CoV-2 spike to have low unfolding enthalpy at serological pH and up to 10-times more unfolding enthalpy at endosomal pH, where we observe significantly reduced CR3022 affinity. Cryo-EM structures -at serological and endosomal pH- delineated spike recognition of up to three ACE2 molecules, revealing RBD to freely adopt the up conformation. In the absence of ACE2, single-RBD-up conformations dominated at pH 5.5, resolving into a locked all-down conformation at lower pH. Notably, a pH-dependent refolding region (residues 824-858) at the spike-interdomain interface displayed dramatic structural rearrangements and mediated RBD positioning and spike shedding of antibodies like CR3022. An endosomal mechanism involving spike-conformational change can thus facilitate immune evasion from RBD- up-recognizing antibody. HighlightsO_LIReveal spike at serological pH to have only ~10% the unfolding enthalpy of a typical globular protein, explaining how antibodies like CR3022 can bind with avidity C_LIO_LIDefine an endosomal mechanism whereby spike binds ACE2, but sheds CR3022, enabling immune evasion from potentially neutralizing antibody C_LIO_LIDetermine cryo-EM structures of the SARS-CoV-2 spike along its endosomal entry pathway-at pH 5.5, 4.5, and 4.0, and in complexes with ACE2 receptor at pH 7.4 and 5.5 C_LIO_LIShow spike to exclusively adopt an all RBD-down conformation at the low pH of the late endosome-early lysosome C_LIO_LIReveal structural basis by which a switch domain mediates RBD position in response to pH C_LI

13.
Preprint in English | bioRxiv | ID: ppbiorxiv-166033

ABSTRACT

Biotin-labeled molecular probes, comprising specific regions of the SARS-CoV-2 spike, would be helpful in the isolation and characterization of antibodies targeting this recently emerged pathogen. To develop such probes, we designed constructs incorporating an N-terminal purification tag, a site-specific protease-cleavage site, the probe region of interest, and a C-terminal sequence targeted by biotin ligase. Probe regions included full-length spike ectodomain as well as various subregions, and we also designed mutants to eliminate recognition of the ACE2 receptor. Yields of biotin-labeled probes from transient transfection ranged from [~]0.5 mg/L for the complete ectodomain to >5 mg/L for several subregions. Probes were characterized for antigenicity and ACE2 recognition, and the structure of the spike ectodomain probe was determined by cryo-electron microscopy. We also characterized antibody-binding specificities and cell-sorting capabilities of the biotinylated probes. Altogether, structure-based design coupled to efficient purification and biotinylation processes can thus enable streamlined development of SARS-CoV-2 spike-ectodomain probes.

SELECTION OF CITATIONS
SEARCH DETAIL