Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Heredity (Edinb) ; 132(4): 192-201, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38302666

ABSTRACT

Climate change is rapidly affecting species distributions across the globe, particularly in the North Atlantic. For highly mobile and elusive cetaceans, the genetic data needed to understand population dynamics are often scarce. Cold-water obligate species such as the white-beaked dolphin (Lagenorhynchus albirostris) face pressures from habitat shifts due to rising sea surface temperatures in addition to other direct anthropogenic threats. Unravelling the genetic connectivity between white-beaked dolphins across their range is needed to understand the extent to which climate change and anthropogenic pressures may impact species-wide genetic diversity and identify ways to protect remaining habitat. We address this by performing a population genomic assessment of white-beaked dolphins using samples from much of their contemporary range. We show that the species displays significant population structure across the North Atlantic at multiple scales. Analysis of contemporary migration rates suggests a remarkably high connectivity between populations in the western North Atlantic, Iceland and the Barents Sea, while two regional populations in the North Sea and adjacent UK and Irish waters are highly differentiated from all other clades. Our results have important implications for the conservation of white-beaked dolphins by providing guidance for the delineation of more appropriate management units and highlighting the risk that local extirpation may have on species-wide genetic diversity. In a broader context, this study highlights the importance of understanding genetic structure of all species threatened with climate change-driven range shifts to assess the risk of loss of species-wide genetic diversity.


Subject(s)
Dolphins , Animals , Dolphins/genetics , Metagenomics , Climate Change , Temperature
2.
Elife ; 122023 Nov 27.
Article in English | MEDLINE | ID: mdl-38009703

ABSTRACT

During evolution, animals have returned from land to water, adapting with morphological modifications to life in an aquatic environment. We compared the osteochondral units of the humeral head of marine and terrestrial mammals across species spanning a wide range of body weights, focusing on microstructural organization and biomechanical performance. Aquatic mammals feature cartilage with essentially random collagen fiber configuration, lacking the depth-dependent, arcade-like organization characteristic of terrestrial mammalian species. They have a less stiff articular cartilage at equilibrium with a significantly lower peak modulus, and at the osteochondral interface do not have a calcified cartilage layer, displaying only a thin, highly porous subchondral bone plate. This totally different constitution of the osteochondral unit in aquatic mammals reflects that accommodation of loading is the primordial function of the osteochondral unit. Recognizing the crucial importance of the microarchitecture-function relationship is pivotal for understanding articular biology and, hence, for the development of durable functional regenerative approaches for treatment of joint damage, which are thus far lacking.


Subject(s)
Cartilage, Articular , Mammals , Animals , Extracellular Matrix , Skin
3.
Emerg Infect Dis ; 29(4): 835-838, 2023 04.
Article in English | MEDLINE | ID: mdl-36958025

ABSTRACT

In August 2021, a large-scale mortality event affected harbor porpoises (Phocoena phocoena) in the Netherlands. Pathology and ancillary testing of 22 animals indicated that the most likely cause of death was Erysipelothrix rhusiopathiae infection. This zoonotic agent poses a health hazard for cetaceans and possibly for persons handling cetacean carcasses.


Subject(s)
Erysipelothrix , Phocoena , Animals , Netherlands/epidemiology
4.
Animals (Basel) ; 12(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36077961

ABSTRACT

A changing marine environment with emerging natural and anthropogenic stressors challenges the marine mammal immune system. The skin and adnexa form a first protective barrier in the immune response, although this is still relatively understudied in cetaceans. The cellular and tissue morphology of the nodular and diffuse lymphoid tissue are not fully charted and the physiological responses are not yet completely understood. The odontocete's external ear canal has a complex relationship with the external environment, with an artificial lumen rendering the inside of the canal a relatively secluded environment. In this work, we studied the odontocete ear canal-associated lymphoid tissue (ECALT) by histo- and immunohistochemistry (HC, IHC) with anti-CD3, anti-CD20, anti-Iba-1, anti-HLA-DR, and anti-vimentin antibodies. The ECALT cellular composition consists mainly of B-lymphocytes with the occasional presence of T-lymphocytes and the dispersed distribution of the macrophages. In cases of activation, the cellular reaction showed a similar pattern with the occasional presence of T-cells, plasma cells, and neutrophils. Nodular lymphoid tissue was generally in line with the description in other odontocetes, although with abundant erythrocytes throughout the entire organ. This study contributes to the understanding of the cellular composition of diffuse and nodular lymphoid tissue in several species of odontocetes, and in association with inflammation of the external ear canal.

5.
Animals (Basel) ; 12(11)2022 Jun 04.
Article in English | MEDLINE | ID: mdl-35681918

ABSTRACT

The application of whole-body post-mortem computed tomography (PMCT) in veterinary and wildlife post-mortem research programs is advancing. A high incidence of pulmonary pathology is reported in the harbor porpoise (Phocoena phocoena). In this study, the value of PMCT focused on pulmonary assessment is evaluated. The objectives of this study were to describe pulmonary changes as well as autolytic features detected by PMCT examination and to compare those findings with conventional necropsy. Retrospective evaluation of whole-body PMCT images of 46 relatively fresh harbor porpoises and corresponding conventional necropsy reports was carried out, with a special focus on the respiratory tract. Common pulmonary PMCT findings included: moderate (24/46) to severe (19/46) increased pulmonary soft tissue attenuation, severe parasite burden (17/46), bronchial wall thickening (30/46), and mild autolysis (26/46). Compared to conventional necropsy, PMCT more frequently identified pneumothorax (5/46 vs. none), tracheal content (26/46 vs. 7/46), and macroscopic pulmonary mineralization (23/46 vs. 11/46), and provided more information of the distribution of pulmonary changes. These results indicate that PMCT adds information on pulmonary assessment and is a promising complementary technique for necropsy, despite the frequent presence of mild autolytic features.

6.
Anat Rec (Hoboken) ; 305(3): 622-642, 2022 03.
Article in English | MEDLINE | ID: mdl-34096183

ABSTRACT

The apex or apical region of the cochlear spiral within the inner ear encodes for low-frequency sounds. The disposition of sensory hair cells on the organ of Corti is largely variable in the apical region of mammals, and it does not necessarily follow the typical three-row pattern of outer hair cells (OHCs). As most underwater noise sources contain low-frequency components, we expect to find most lesions in the apical region of the cochlea of toothed whales, in cases of permanent noise-induced hearing loss. To further understand how man-made noise might affect cetacean hearing, there is a need to describe normal morphological features of the apex and document interspecific anatomic variations in cetaceans. However, distinguishing between apical normal variability and hair cell death is challenging. We describe anatomical features of the organ of Corti of the apex in 23 ears from five species of toothed whales (harbor porpoise Phocoena phocoena, spinner dolphin Stenella longirostris, pantropical spotted dolphin Stenella attenuata, pygmy sperm whale Kogia breviceps, and beluga whale Delphinapterus leucas) by scanning electron microscopy and immunofluorescence. Our results showed an initial region where the lowest frequencies are encoded with two or three rows of OHCs, followed by the typical configuration of three OHC rows and three rows of supporting Deiters' cells. Whenever two rows of OHCs were detected, there were usually only two corresponding rows of supporting Deiters' cells, suggesting that the number of rows of Deiters' cells is a good indicator to distinguish between normal and pathological features.


Subject(s)
Cochlea , Hearing Loss, Noise-Induced , Animals , Biomarkers/metabolism , Cochlea/pathology , Hair Cells, Auditory, Outer/metabolism , Hair Cells, Auditory, Outer/pathology , Hearing Loss, Noise-Induced/metabolism , Humans , Organ of Corti/pathology , Whales
7.
R Soc Open Sci ; 8(12): 210949, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34909214

ABSTRACT

Baleen from mysticete whales is a well-preserved proteinaceous material that can be used to identify migrations and feeding habits for species whose migration pathways are unknown. Analysis of δ13C and δ15N values from bulk baleen have been used to infer migration patterns for individuals. However, this approach has fallen short of identifying migrations between regions as it is difficult to determine variations in isotopic shifts without temporal sampling of prey items. Here, we apply analysis of δ15N values of amino acids to five baleen plates belonging to three species, revealing novel insights on trophic position, metabolic state and migration between regions. Humpback and minke whales had higher reconstructed trophic levels than fin whales (3.7-3.8 versus 3-3.2, respectively) as expected due to different feeding specialization. Isotopic niche areas between baleen minima and maxima were well separated, indicating regional resource use for individuals during migration that aligned with isotopic gradients in Atlantic Ocean particulate organic matter. Phenylanine δ15N values confirmed regional separation between the niche areas for two fin whales as migrations occurred and elevated glycine and threonine δ15N values suggested physiological changes due to fasting. Simultaneous resolution of trophic level and physiological changes allow for identification of regional migrations in mysticetes.

8.
Animals (Basel) ; 11(11)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34827790

ABSTRACT

Evidence of hearing impairment was identified in a harbour porpoise (Phocoena phocoena) on the basis of scanning electron microscopy. In addition, based on histopathology and immunohistochemistry, there were signs of unrelated cerebral toxoplasmosis. The six-year old individual live stranded on the Dutch coast at Domburg in 2016 and died a few hours later. The most significant gross lesion was multifocal necrosis and haemorrhage of the cerebrum. Histopathology of the brain revealed extensive necrosis and haemorrhage in the cerebrum with multifocal accumulations of degenerated neutrophils, lymphocytes and macrophages, and perivascular lymphocytic cuffing. The diagnosis of cerebral toxoplasmosis was confirmed by positive staining of protozoa with anti-Toxoplasma gondii antibodies. Tachyzoites were not observed histologically in any of the examined tissues. Ultrastructural evaluation of the inner ear revealed evidence of scattered loss of outer hair cells in a 290 µm long segment of the apical turn of the cochlea, and in a focal region of ~ 1.5 mm from the apex of the cochlea, which was compatible with noise-induced hearing loss. This is the first case of concurrent presumptive noise-induced hearing loss and toxoplasmosis in a free-ranging harbour porpoise from the North Sea.

9.
Sci Rep ; 11(1): 19201, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34725464

ABSTRACT

A variety of mammals suppress reproduction when they experience poor physical condition or environmental harshness. In many marine mammal species, reproductive impairment has been correlated to polychlorinated biphenyls (PCBs), the most frequently measured chemical pollutants, while the relative importance of other factors remains understudied. We investigate whether reproductively active females abandon investment in their foetus when conditions are poor, exemplified using an extensively studied cetacean species; the harbour porpoise (Phocoena phocoena). Data on disease, fat and muscle mass and diet obtained from necropsies in The Netherlands were used as proxies of health and nutritional status and related to pregnancy and foetal growth. This was combined with published life history parameters for 16 other areas to correlate to parameters reflecting environmental condition: mean energy density of prey constituting diets (MEDD), cumulative human impact and PCB contamination. Maternal nutritional status had significant effects on foetal size and females in poor health had lower probabilities of being pregnant and generally did not sustain pregnancy throughout gestation. Pregnancy rates across the Northern Hemisphere were best explained by MEDD. We demonstrate the importance of having undisturbed access to prey with high energy densities in determining reproductive success and ultimately population size for small cetaceans.


Subject(s)
Nutritional Status/physiology , Phocoena/metabolism , Reproduction/physiology , Animals , Cetacea/metabolism , Conservation of Natural Resources/methods , Energy Metabolism/physiology , Female , Hydrobiology/methods , Netherlands , Polychlorinated Biphenyls/adverse effects , Polychlorinated Biphenyls/analysis , Pregnancy , Reproduction/drug effects , Sexual Behavior, Animal/drug effects , Water Pollutants, Chemical/adverse effects , Water Pollutants, Chemical/analysis
10.
Sci Total Environ ; 796: 148936, 2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34328906

ABSTRACT

Persistent organic pollutants (POPs), including polychlorinated biphenyls (PCBs), polybrominated diphenylethers (PBDEs) and hexachlorobenzene (HCB), bioaccumulate in marine ecosystems. Top predators contain high levels of POPs in their lipid-rich tissues, which may result in adverse effects on their reproductive, immune and endocrine functions. Harbour porpoises (Phocoena phocoena) are among the smallest of cetaceans and live under high metabolic demand, making them particularly vulnerable to environmental pressures. Using samples from individuals of all maturity classes and sexes stranded along the southern North Sea (n = 121), we show the generational transfer of PCBs, PBDEs and HCB from adults to foetuses. Porpoise placentas contained 1.3-8.2 mg/kg lipid weight (lw) Sum-17PCB, 9 mg/kg lw). This was particularly true for adult males (92.3% >9 mg/kg lw), while adult females had relatively low PCB levels (10.5% >9 mg/kg lw) due to offloading. Nutritional stress led to higher offloading in the milk, causing a greater potential for toxicity in calves of nutritionally stressed females. No correlation between PCB concentration and parasite infestation was detected, although the probability of a porpoise dying due to infectious disease or debilitation increased with increasing PCB concentrations. Despite current regulations to reduce pollution, these results provide further evidence of potential health effects of POPs on harbour porpoises of the southern North Sea, which may consequently increase their susceptibility to other pressures.


Subject(s)
Phocoena , Polychlorinated Biphenyls , Water Pollutants, Chemical , Animals , Ecosystem , Female , Male , North Sea , Polychlorinated Biphenyls/analysis , Water Pollutants, Chemical/analysis
11.
Int J Parasitol Parasites Wildl ; 15: 22-30, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33936945

ABSTRACT

Whale lice (Cyamidae; Amphipoda) are ectoparasitic crustaceans adapted to the marine environment with cetaceans as their host. There are few reports of cyamids occurring in odontocetes from the North Sea, and long-term studies are lacking. Marine mammal health was monitored along the German and Dutch coasts in the past decades, with extensive post mortem investigations conducted. The aim of this study was to analyse archived ectoparasite samples from stranded cetaceans from the North Sea (2010-2019), to determine species, prevalence and impact of ectoparasite infection. Ectoparasites were found on two cetacean species - harbour porpoises (Phocoena phocoena), as the most abundant cetacean species in the North Sea, and on a pilot whale (Globicephala melas), as a rare species here. Prevalence of ectoparasitic crustaceans in cetaceans was low: 7.6% in porpoises stranded in the Netherlands (n = 608) and 1.6% in porpoises stranded in Germany (n = 122). All whale lice infections were found on hosts with skin lesions characterised by ulcerations. Morphological investigations revealed characteristic differences between the cyamid species Isocyamus (I.) delphinii and I. deltobranchium identified. Isocyamus deltobranchium was determined in all infected harbour porpoises. I. delphinii was identified on only the pilot whale. Molecular analyses showed 88% similarity of mDNA COI sequences of I. delphinii with I. deltobranchium supporting them as separate species. Phylogenetic analyses of additional gene loci are required to fully assess the diversity and exchange of whale lice species between geographical regions as well as host specificity. Differing whale lice prevalences in porpoises stranded in the Netherlands and Germany could indicate a difference in severity of skin lesions between these areas. It should be further investigated if more inter- or intraspecific contact, e.g., due to a higher density of porpoises or contact with other cetaceans, or a poorer health status of porpoises in the southern North Sea could explain these differences.

12.
Sci Rep ; 11(1): 7218, 2021 03 30.
Article in English | MEDLINE | ID: mdl-33785866

ABSTRACT

Scoliosis is a deformation of the spine that may have several known causes, but humans are the only mammal known to develop scoliosis without any obvious underlying cause. This is called 'idiopathic' scoliosis and is the most common type. Recent observations showed that human scoliosis, regardless of its cause, has a relatively uniform three-dimensional anatomy. We hypothesize that scoliosis is a universal compensatory mechanism of the spine, independent of cause and/or species. We had the opportunity to study the rare occurrence of scoliosis in a whale (Balaenoptera acutorostrata) that stranded in July 2019 in the Netherlands. A multidisciplinary team of biologists, pathologists, veterinarians, taxidermists, radiologists and orthopaedic surgeons conducted necropsy and imaging analysis. Blunt traumatic injury to two vertebrae caused an acute lateral deviation of the spine, which had initiated the development of compensatory curves in regions of the spine without anatomical abnormalities. Three-dimensional analysis of these compensatory curves showed strong resemblance with different types of human scoliosis, amongst which idiopathic. This suggests that any decompensation of spinal equilibrium can lead to a rather uniform response. The unique biomechanics of the upright human spine, with significantly decreased rotational stability, may explain why only in humans this mechanism can be induced relatively easily, without an obvious cause, and is therefore still called 'idiopathic'.


Subject(s)
Scoliosis/etiology , Scoliosis/veterinary , Whales , Animals , Biomechanical Phenomena , Female , Humans , Scoliosis/pathology , Spine/pathology , Whales/physiology
13.
Anat Rec (Hoboken) ; 304(5): 968-978, 2021 05.
Article in English | MEDLINE | ID: mdl-33015959

ABSTRACT

Vertebral series in the harbor porpoise (Phocoena phocoena) include cervical, thoracic, lumbar, and caudal. In contrast to studying skeletons from museums, in which small bones can be missed, evaluation of full body computed tomography (CT) scans provides an overview of the vertebral column, while maintaining interrelationship of all structures. The aim of this study was to document variations in vertebral patterning of the harbor porpoise via evaluation of CT images of intact stranded harbor porpoises. The harbor porpoises were divided into age classes, based on developmental stage of reproductive organs on postmortem examination and closure of proximal humeral physis on CT. Numbers of vertebrae per series, fusion state of the syncervical, type of first hemal arch, number of double articulating ribs, and floating ribs were recorded based on CT images. Included in the study were 48 harbor porpoises (27 males and 21 females), which were divided in two age classes (27 immatures and 21 adults). Total vertebral count varied from 63 to 68 with vertebral formula range C7T12-14L12-16Cd29-33. Twenty-five different vertebral formulas were found, of which C7T13L14Ca30 was the most common (n = 8, 17%). Thoracic vertebrae with six, seven, or eight double articulating ribs and zero, one, or two vertebrae with floating ribs were seen. Four different fusion states of the syncervical and four types of hemal arches were recognized. This study showed a great variation in vertebral patterning in the harbor porpoise, with homeotic and meristic variation in the thoracic, lumbar, and caudal vertebral series.


Subject(s)
Phocoena/anatomy & histology , Spine/diagnostic imaging , Animals , Female , Male , North Sea , Tomography, X-Ray Computed
14.
Vet Pathol ; 58(2): 405-415, 2021 03.
Article in English | MEDLINE | ID: mdl-33272139

ABSTRACT

Bycatch is considered one of the most significant threats affecting cetaceans worldwide. In the North Sea, bottom-set gillnets are a specific risk for harbor porpoises (Phocoena phocoena). Methods to estimate bycatch rates include on-board observers, remote electronic monitoring, and fishermen voluntarily reporting; none of these are systematically conducted. Additionally, necropsies of stranded animals can provide insights into bycatch occurrence and health status of individuals. There are, however, uncertainties when it comes to the assessment of bycatch in stranded animals, mainly due to the lack of diagnostic tools specific for underwater entrapment. We conducted a literature review to establish criteria that aid in the assessment of bycatch in small cetaceans, and we tested which of these criteria applied to harbor porpoises retrieved from gillnets in the Netherlands (n = 12). Twenty-five criteria were gathered from literature. Of these, "superficial incisions," "encircling imprints," and "recent ingestion of prey" were observed in the vast majority of our confirmed bycatch cases. Criteria like "pulmonary edema," "pulmonary emphysema," and "organ congestion" were also frequently observed, although considered unspecific as an indicator of bycatch. Notably, previously mentioned criteria as "favorable health status," "absence of disease," or "good nutritional condition" did not apply to the majority of our bycaught porpoises. This may reflect an overall reduced fitness of harbor porpoises inhabiting the southern North Sea or a higher chance of a debilitated porpoise being bycaught, and could result in an underestimation of bycatch rates when assessing stranded animals.


Subject(s)
Phocoena , Animals , Autopsy/veterinary , Netherlands , North Sea
15.
Front Vet Sci ; 7: 429, 2020.
Article in English | MEDLINE | ID: mdl-32851016

ABSTRACT

Prestin is an integral membrane motor protein located in outer hair cells of the mammalian cochlea. It is responsible for electromotility and required for cochlear amplification. Although prestin works in a cycle-by-cycle mode up to frequencies of at least 79 kHz, it is not known whether or not prestin is required for the extreme high frequencies used by echolocating species. Cetaceans are known to possess a prestin coding gene. However, the expression and distribution pattern of the protein in the cetacean cochlea has not been determined, and the contribution of prestin to echolocation has not yet been resolved. Here we report the expression of the protein prestin in five species of echolocating whales and two species of echolocating bats. Positive labeling in the basolateral membrane of outer hair cells, using three anti-prestin antibodies, was found all along the cochlear spiral in echolocating species. These findings provide morphological evidence that prestin can have a role in cochlear amplification in the basolateral membrane up to 120-180 kHz. In addition, labeling of the cochlea with a combination of anti-prestin, anti-neurofilament, anti-myosin VI and/or phalloidin and DAPI will be useful for detecting potential recent cases of noise-induced hearing loss in stranded cetaceans. This study improves our understanding of the mechanisms involved in sound transduction in echolocating mammals, as well as describing an optimized methodology for detecting cases of hearing loss in stranded marine mammals.

16.
Front Vet Sci ; 7: 262, 2020.
Article in English | MEDLINE | ID: mdl-32671103

ABSTRACT

In the North Sea, white-beaked dolphins (Lagenorhynchus albirostris) occur regularly and are the second most common cetacean in the area, while their close relative, the Atlantic white-sided dolphin (Lagenorhynchus acutus), prefers the deeper waters of the northern North Sea and adjacent Atlantic Ocean. Though strandings of both species have occurred regularly in the past three decades, they have decreased in the southern North Sea during the last years. Studies describing necropsy findings in stranded Lagenorhynchus spp. are, to date, still scarce, while information gained through post-mortem examinations may reveal valuable information about underlying causes of this decline, including age structure and the reproduction status. Therefore, we retrospectively assessed and compared the necropsy results from fresh Lagenorhynchus spp. stranded along the southeastern North Sea between 1990 and 2019. A full necropsy was performed on 24 white-beaked dolphins and three Atlantic white-sided dolphins from the German and Dutch coast. Samples of selected organs were taken for histopathological, bacteriological, mycological, parasitological and virological examinations. The most common post-mortem findings were emaciation, gastritis and pneumonia. Gastritis and ulceration of the stomach was often associated with an anisakid nematode infection. Pneumonia was most likely caused by bacterial infections. Encephalitis was observed in three animals and morbillivirus antigen was detected immunohistochemically in one case. Although the animal also showed pneumonic lesions, virus antigen was only found in the brain. Parasitic infections mainly affected the gastro-intestinal tract. Lungworm infections were only detected in two cases and no associations with pathological alterations were observed. Stenurus spp. were identified in two of three cases of parasitic infections of the ears. Twelve of the 26 white-beaked dolphins stranded in Germany were found between 1993 and 1994, but there was no evidence of epizootic disease events or mass strandings during the monitored period.

17.
Int J Parasitol Parasites Wildl ; 12: 93-98, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32489854

ABSTRACT

Harbour porpoises (Phocoena phocoena) are the only native cetacean species in the German North and Baltic Seas and the final host of Anisakis (A.) simplex, which infects their first and second gastric compartments and may cause chronic ulcerative gastritis. Anisakis simplex belongs to the family Anisakidae (Ascaridoidea, Rhabditida) as well as the phocine gastric nematode species Pseudoterranova (P.) decipiens and Contracaecum (C.) osculatum. These nematode species are the main causative agents for the zoonosis anisakidosis. The taxonomy of these genus with life cycles including crustaceans and commercially important fish is complex because of the formation of sibling species. Little is known about anisakid species infecting porpoises in the study area. Mature nematodes and larval stages are often identifiable only by molecular methods due to high morphological and genetic similarity. The restriction fragment length polymorphism (RFLP) method is an alternative to sequencing and was applied to identify anisakid nematodes found in harbour porpoises from the North Sea, Baltic Sea and North Atlantic to species level for the first time. In the study areas, five gastric nematodes from different harbour porpoise hosts were selected to be investigated with restriction enzymes HinfI, RsaI and HaeIII, which were able to differentiate several anisakid nematode species by characteristic banding patterns. Anisakis simplex s. s. was the dominant species found in the North Sea and Baltic porpoises, identified by all three restriction enzymes. Additionally, a hybrid of A. simplex s. s. and A. pegreffii was determined by HinfI in the North Sea samples. Within the North Atlantic specimens, A. simplex s. s., P. decipiens s. s. and Hysterothylacium (H.) aduncum were identified by all enzymes. This demonstrates the value of the RFLP method and the chosen restriction enzymes for the species identification of a broad variety of anisakid nematodes affecting the health of marine mammals.

18.
R Soc Open Sci ; 7(5): 192079, 2020 May.
Article in English | MEDLINE | ID: mdl-32537205

ABSTRACT

Recent population growth of the harbour porpoise (Phocoena phocoena), grey seal (Halichoerus grypus) and common seal (Phoca vitulina) in the North Sea has increased potential interaction between these species. Grey seals are known to attack harbour porpoises. Some harbour porpoises survive initially, but succumb eventually, often showing severely infected skin lesions. Bacteria transferred from the grey seal oral cavity may be involved in these infections and eventual death of the animal. In humans, seal bites are known to cause severe infections. In this study, a 16S rRNA-based microbiome sequencing approach is used to identify the oral bacterial diversity in harbour porpoises, grey seals and common seals; detect the potential transfer of bacteria from grey seals to harbour porpoises by biting and provide insights in the bacteria with zoonotic potential present in the seal oral cavity. ß-diversity analysis showed that 12.9% (4/31) of the harbour porpoise skin lesion microbiomes resembled seal oral microbiomes, while most of the other skin lesion microbiomes also showed seal-associated bacterial species, including potential pathogens. In conclusion, this study shows that bacterial transmission from grey seals to harbour porpoises by biting is highly likely and that seal oral cavities harbour many bacterial pathogens with zoonotic potential.

19.
Sci Rep ; 9(1): 14338, 2019 10 11.
Article in English | MEDLINE | ID: mdl-31605019

ABSTRACT

Neisseria animaloris is considered to be a commensal of the canine and feline oral cavities. It is able to cause systemic infections in animals as well as humans, usually after a biting trauma has occurred. We recovered N. animaloris from chronically inflamed bite wounds on pectoral fins and tailstocks, from lungs and other internal organs of eight harbour porpoises. Gross and histopathological evidence suggest that fatal disseminated N. animaloris infections had occurred due to traumatic injury from grey seals. We therefore conclude that these porpoises survived a grey seal predatory attack, with the bite lesions representing the subsequent portal of entry for bacteria to infect the animals causing abscesses in multiple tissues, and eventually death. We demonstrate that forensic microbiology provides a useful tool for linking a perpetrator to its victim. Moreover, N. animaloris should be added to the list of potential zoonotic bacteria following interactions with seals, as the finding of systemic transfer to the lungs and other tissues of the harbour porpoises may suggest a potential to do likewise in humans.


Subject(s)
Forensic Genetics , Neisseria/pathogenicity , Seals, Earless/injuries , Wounds and Injuries/genetics , Animals , Animals, Wild/genetics , Animals, Wild/injuries , Animals, Wild/microbiology , Neisseria/genetics , Seals, Earless/genetics , Seals, Earless/microbiology , Wounds and Injuries/microbiology , Zoonoses/genetics , Zoonoses/microbiology
20.
PLoS One ; 13(8): e0201221, 2018.
Article in English | MEDLINE | ID: mdl-30086178

ABSTRACT

Between the 8th January and the 25th February 2016, the largest sperm whale Physeter macrocephalus mortality event ever recorded in the North Sea occurred with 30 sperm whales stranding in five countries within six weeks. All sperm whales were immature males. Groups were stratified by size, with the smaller animals stranding in the Netherlands, and the largest in England. The majority (n = 27) of the stranded animals were necropsied and/or sampled, allowing for an international and comprehensive investigation into this mortality event. The animals were in fair to good nutritional condition and, aside from the pathologies caused by stranding, did not exhibit significant evidence of disease or trauma. Infectious agents were found, including various parasite species, several bacterial and fungal pathogens and a novel alphaherpesvirus. In nine of the sperm whales a variety of marine litter was found. However, none of these findings were considered to have been the primary cause of the stranding event. Potential anthropogenic and environmental factors that may have caused the sperm whales to enter the North Sea were assessed. Once sperm whales enter the North Sea and head south, the water becomes progressively shallower (<40 m), making this region a global hotspot for sperm whale strandings. We conclude that the reasons for sperm whales to enter the southern North Sea are the result of complex interactions of extrinsic environmental factors. As such, these large mortality events seldom have a single ultimate cause and it is only through multidisciplinary, collaborative approaches that potentially multifactorial large-scale stranding events can be effectively investigated.


Subject(s)
Sperm Whale , Animal Migration , Animals , Autopsy/veterinary , Diet/veterinary , England , Environmental Monitoring , Male , Mortality , Netherlands , North Sea , Sperm Whale/microbiology , Sperm Whale/parasitology , Sperm Whale/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...