Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Front Zool ; 21(1): 9, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38500207

ABSTRACT

A comprehensive understanding of the dietary habits of carnivores is essential to get ecological insights into their role in the ecosystem, potential competition with other carnivorous species, and their effect on prey populations. Genetic analysis of non-invasive samples, such as scats, can supplement behavioural or microscopic diet investigations. The objective of this study was to employ DNA metabarcoding to accurately determine the prey species in grey wolf (Canis lupus) and Eurasian lynx (Lynx lynx) scat samples collected in the Julian Alps and the Dinaric Mountains, Slovenia. The primary prey of wolves were red deer (Cervus elaphus) (detected in 96% scat samples), European roe deer (Capreolus capreolus) (68%), and wild boar (Sus scrofa) (45%). A smaller portion of their diet consisted of mesocarnivores, small mammals, and domestic animals. In contrast, the lynx diet mostly consisted of European roe deer (82%) and red deer (64%). However, small mammals and domestic animals were also present in lynx diet, albeit to a lesser extent. Our findings indicate that the dietary habits of wolves and lynx are influenced by geographical location. Snapshot dietary analyses using metabarcoding are valuable for comprehending the behaviour and ecology of predators, and for devising conservation measures aimed at sustainable management of both their natural habitats and prey populations. However, to gain a more detailed understanding of wolf and lynx dietary habits and ecological impact, it would be essential to conduct long-term genetic monitoring of their diet.

2.
Nat Ecol Evol ; 8(2): 267-281, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225425

ABSTRACT

Genetic monitoring of populations currently attracts interest in the context of the Convention on Biological Diversity but needs long-term planning and investments. However, genetic diversity has been largely neglected in biodiversity monitoring, and when addressed, it is treated separately, detached from other conservation issues, such as habitat alteration due to climate change. We report an accounting of efforts to monitor population genetic diversity in Europe (genetic monitoring effort, GME), the evaluation of which can help guide future capacity building and collaboration towards areas most in need of expanded monitoring. Overlaying GME with areas where the ranges of selected species of conservation interest approach current and future climate niche limits helps identify whether GME coincides with anticipated climate change effects on biodiversity. Our analysis suggests that country area, financial resources and conservation policy influence GME, high values of which only partially match species' joint patterns of limits to suitable climatic conditions. Populations at trailing climatic niche margins probably hold genetic diversity that is important for adaptation to changing climate. Our results illuminate the need in Europe for expanded investment in genetic monitoring across climate gradients occupied by focal species, a need arguably greatest in southeastern European countries. This need could be met in part by expanding the European Union's Birds and Habitats Directives to fully address the conservation and monitoring of genetic diversity.


Subject(s)
Climate Change , Conservation of Natural Resources , Conservation of Natural Resources/methods , Europe , Ecosystem , Genetic Variation
3.
Heredity (Edinb) ; 130(3): 135-144, 2023 03.
Article in English | MEDLINE | ID: mdl-36639700

ABSTRACT

European wildlife has been subjected to intensifying levels of anthropogenic impact throughout the Holocene, yet the main genetic partitioning of many species is thought to still reflect the late-Pleistocene glacial refugia. We analyzed 26,342 nuclear SNPs of 464 wild boar (Sus scrofa) across the European continent to infer demographic history and reassess the genetic consequences of natural and anthropogenic forces. We found that population fragmentation, inbreeding and recent hybridization with domestic pigs have caused the spatial genetic structure to be heterogeneous at the local scale. Underlying local anthropogenic signatures, we found a deep genetic structure in the form of an arch-shaped cline extending from the Dinaric Alps, via Southeastern Europe and the Baltic states, to Western Europe and, finally, to the genetically diverged Iberian peninsula. These findings indicate that, despite considerable anthropogenic influence, the deeper, natural continental structure is still intact. Regarding the glacial refugia, our findings show a weaker signal than generally assumed, but are nevertheless suggestive of two main recolonization routes, with important roles for Southern France and the Balkans. Our results highlight the importance of applying genomic resources and framing genetic results within a species' demographic history and geographic distribution for a better understanding of the complex mixture of underlying processes.


Subject(s)
Genetic Variation , Genome , Animals , Swine , Europe , Demography , Sus scrofa/genetics , Phylogeny , DNA, Mitochondrial/genetics
4.
Ecol Evol ; 12(4): e8804, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35414901

ABSTRACT

Patterns of genetic differentiation within and among animal populations might vary due to the simple effect of distance or landscape features hindering gene flow. An assessment of how landscape connectivity affects gene flow can help guide management, especially in fragmented landscapes. Our objective was to analyze population genetic structure and landscape genetics of the native wild boar (Sus scrofa meridionalis) population inhabiting the island of Sardinia (Italy), and test for the existence of Isolation-by-Distance (IBD), Isolation-by-Barrier (IBB), and Isolation-by-Resistance (IBR). A total of 393 Sardinian wild boar samples were analyzed using a set of 16 microsatellite loci. Signals of genetic introgression from introduced non-native wild boars or from domestic pigs were revealed by a Bayesian cluster analysis including 250 reference individuals belonging to European wild populations and domestic breeds. After removal of introgressed individuals, genetic structure in the population was investigated by different statistical approaches, supporting a partition into five discrete subpopulations, corresponding to five geographic areas on the island: north-west (NW), central west (CW), south-west (SW), north-central east (NCE), and south-east (SE). To test the IBD, IBB, and IBR hypotheses, we optimized resistance surfaces using genetic algorithms and linear mixed-effects models with a maximum likelihood population effects parameterization. Landscape genetics analyses revealed that genetic discontinuities between subpopulations can be explained by landscape elements, suggesting that main roads, urban settings, and intensively cultivated areas are hampering gene flow (and thus individual movements) within the Sardinian wild boar population. Our results reveal how human-transformed landscapes can affect genetic connectivity even in a large-sized and highly mobile mammal such as the wild boar, and provide crucial information to manage the spread of pathogens, including the African Swine Fever virus, endemic in Sardinia.

5.
Zookeys ; 1116: 57-70, 2022.
Article in English | MEDLINE | ID: mdl-36760981

ABSTRACT

The translocation of wild animal species became a common practice worldwide to re-establish local populations threatened with extinction. Archaeological data confirm that chamois once lived in the Biokovo Mountain but, prior to their reintroduction in the 1960s, there was no written evidence of their recent existence in the area. The population was reintroduced in the period 1964-1969, when 48 individuals of Balkan chamois from the neighbouring mountains in Bosnia and Herzegovina were released. The main objective of this study was to determine the accuracy of the existing historical data on the origin of the Balkan chamois population from the Biokovo Mountain and to assess the genetic diversity and population structure of the source and translocated populations 56 years after reintroduction. Sixteen microsatellite loci were used to analyse the genetic structure of three source chamois populations from Prenj, Cvrsnica and Cabulja Mountains and from Biokovo Mountain. Both STRUCTURE and GENELAND analyses showed a clear separation of the reintroduced population on Biokovo from Prenj's chamois and considerable genetic similarity between the Biokovo population and the Cvrsnica-Cabulja population. This suggests that the current genetic composition of the Biokovo population does not derive exclusively from Prenj, as suggested by the available literature and personal interviews, but also from Cvrsnica and Cabulja. GENELAND analysis recognised the Balkan chamois from Prenj as a separate cluster, distinct from the populations of Cvrsnica and Cabulja. Our results thus highlight the need to implement genetic monitoring of both reintroduced and source populations of endangered Balkan chamois to inform sustainable management and conservation strategies in order to maximise the chances of population persistence.

7.
Animals (Basel) ; 11(4)2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33918642

ABSTRACT

Although the two species of chamois (Rupicapra rupicapra and R. pyrenaica) are currently classified as least-concern by the IUCN (International Union for Conservation of Nature), inconsistencies on the subspecies classification reported in literature make it challenging to assess the conservation status of the single subspecies. Previous studies relying on mitochondrial genes, sometimes in combination with nuclear or Y-chromosome markers, reported the presence of clusters corresponding to the geographic distribution but highlighting ambiguities in the genus phylogeny. Here we report novel de novo assembled sequences of the mitochondrial genome from nine individuals, including previously unpublished R. r. balcanica and R. r. tatrica subspecies, and use them to untangle the genus phylogeny. Our results based on the full mitogenome inferred phylogeny confirm the previously reported genus subdivision in three clades and its monophyletic positioning within the Caprinae. Phylogeny and taxonomy of Rupicapra species thus remain controversial prompting for the inclusion of archeological remains to solve the controversy.

8.
Sci Rep ; 11(1): 6820, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33767219

ABSTRACT

With an accelerating negative impact of anthropogenic actions on natural ecosystems, non-invasive biodiversity assessments are becoming increasingly crucial. As a consequence, the interest in the application of environmental DNA (eDNA) survey techniques has increased. The use of eDNA extracted from faeces from generalist predators, have recently been described as "biodiversity capsules" and suggested as a complementary tool for improving current biodiversity assessments. In this study, using faecal samples from two generalist omnivore species, the Eurasian badger and the red fox, we evaluated the applicability of eDNA metabarcoding in determining dietary composition, compared to macroscopic diet identification techniques. Subsequently, we used the dietary information obtained to assess its contribution to biodiversity assessments. Compared to classic macroscopic techniques, we found that eDNA metabarcoding detected more taxa, at higher taxonomic resolution, and proved to be an important technique to verify the species identification of the predator from field collected faeces. Furthermore, we showed how dietary analyses complemented field observations in describing biodiversity by identifying consumed flora and fauna that went unnoticed during field observations. While diet analysis approaches could not substitute field observations entirely, we suggest that their integration with other methods might overcome intrinsic limitations of single techniques in future biodiversity surveys.


Subject(s)
Biodiversity , DNA Barcoding, Taxonomic , DNA, Environmental/analysis , Food Chain , Animal Feed/analysis , Animals , Denmark , Ecosystem , Feces/chemistry , Geography
9.
Animals (Basel) ; 10(9)2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32962183

ABSTRACT

Genes of the major histocompatibility complex (MHC) code for cell surface proteins essential for adaptive immunity. They show the most outstanding genetic diversity in vertebrates, which has been connected with various fitness traits and thus with the long-term persistence of populations. In this study, polymorphism of the MHC class II DRB locus was investigated in chamois with Single-Strand Conformation Polymorphism (SSCP)/Sanger genotyping and Ion Torrent S5 next-generation sequencing (NGS). From eight identified DRB variants in 28 individuals, five had already been described, and three were new, undescribed alleles. With conventional SSCP/Sanger sequencing, we were able to detect seven alleles, all of which were also detected with NGS. We found inconsistencies in the individual genotypes between the two methods, which were mainly caused by allelic dropout in the SSCP/Sanger method. Six out of 28 individuals were falsely classified as homozygous with SSCP/Sanger analysis. Overall, 25% of the individuals were identified as genotyping discrepancies between the two methods. Our results show that NGS technologies are better performing in sequencing highly variable regions such as the MHC, and they also have a higher detection capacity, thus allowing a more accurate description of the genetic composition, which is crucial for evolutionary and population genetic studies.

11.
Front Genet ; 11: 261, 2020.
Article in English | MEDLINE | ID: mdl-32296459

ABSTRACT

The majority of the nearly 400 existing local pig breeds are adapted to specific environments and human needs. The demand for large production quantities and the industrialized pig production have caused a rapid decline of many local pig breeds in recent decades. Black Slavonian pig and Turopolje pig, the latter highly threatened, are the two Croatian local indigenous breeds typically grown in extensive or semi-intensive systems. In order to guide a long-term breeding program to prevent the disappearance of these breeds, we analyzed their genetic diversity, inbreeding level and relationship with other local breeds across the world, as well as modern breeds and several wild populations, using high throughput genomic data obtained using the Illumina Infinium PorcineSNP60 v2 BeadChip. Multidimensional scaling analysis positioned Black Slavonian pigs close to the UK/North American breeds, while the Turopolje pig clustered within the Mediterranean breeds. Turopolje pig showed a very high inbreeding level (FROH > 4 Mb = 0.400 and FROH > 8 Mb = 0.332) that considerably exceeded the level of full-sib mating, while Black Slavonian pig showed much lower inbreeding (FROH > 4 Mb = 0.098 and FROH > 8 Mb = 0.074), indicating a planned mating strategy. In Croatian local breeds we identified several genome regions showing adaptive selection signals that were not present in commercial breeds. The results obtained in this study reflect the current genetic status and breeding management of the two Croatian indigenous local breeds. Given the small populations of both breeds, a controlled management activity has been implemented in Black Slavonian pigs since their commercial value has been recognized. In contrast, the extremely high inbreeding level observed in Turopolje pig argues for an urgent conservation plan with a long-term, diversity-oriented breeding program.

12.
Genetica ; 148(1): 41-46, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31983008

ABSTRACT

During the early 1900s, Northern chamois (Rupicapra rupicapra) populations in the northern Dinaric Mountains were extirpated. During the 1960s and 1970s there were several reintroductions of individuals from two Northern chamois subspecies (Alpine chamois, R. r. rupicapra and Balkan chamois, R. r. balcanica) from neighbouring areas in the attempt to re-establish the population. Accurate taxonomic classification, at subspecies level, of the autochthonous extirpated population was not known. To clarify which subspecies was present before reintroduction, we genotyped four male chamois skulls originating from Velebit Mountain, collected around 25 years before the population local extinction. DNA was successfully extracted from middle layer and outer sheath of horns. Assignment based on microsatellite loci, using both Bayesian clustering in STRUCTURE (with q values between 0.55 and 0.73) and DAPC (with individual membership probabilities of 0.99 and 1.00) indicated higher assessed likelihood for the Alpine subspecies.


Subject(s)
Microsatellite Repeats/genetics , Rupicapra/genetics , Animals , Conservation of Natural Resources , Evolution, Molecular , Horns , Male , Phylogeny , Sequence Analysis, DNA/methods , Skull
13.
Sci Rep ; 9(1): 20187, 2019 Dec 24.
Article in English | MEDLINE | ID: mdl-31874973

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

14.
Evol Appl ; 12(6): 1096-1113, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31293626

ABSTRACT

Native domestic breeds represent important cultural heritage and genetic diversity relevant for production traits, environmental adaptation and food security. However, risks associated with low effective population size, such as inbreeding and genetic drift, have elevated concerns over whether unique within-breed lineages should be kept separate or managed as one population. As a conservation genomic case study of the genetic diversity represented by native breeds, we examined native and commercial cattle (Bos taurus) breeds including the threatened Danish Jutland cattle. We examined population structure and genetic diversity within breeds and lineages genotyped across 770K single nucleotide polymorphism loci to determine (a) the amount and distribution of genetic diversity in native breeds, and (b) the role of genetic drift versus selection. We further investigated the presence of outlier loci to detect (c) signatures of environmental selection in native versus commercial breeds, and (d) native breed adaptation to various landscapes. Moreover, we included older cryopreserved samples to determine (e) whether cryopreservation allows (re)introduction of original genetic diversity. We investigated a final set of 195 individuals and 677K autosomal loci for genetic diversity within and among breeds, examined population structure with principal component analyses and a maximum-likelihood approach and searched for outlier loci suggesting artificial or natural selection. Our findings demonstrate the potential of genomics for identifying the uniqueness of native domestic breeds, and for maintaining their genetic diversity and long-term evolutionary potential through conservation plans balancing inbreeding with carefully designed outcrossing. One promising opportunity is the use of cryopreserved samples, which can provide important genetic diversity for populations with few individuals, while helping to preserve their traditional genetic characteristics. Outlier tests for native versus commercial breeds identified genes associated with climate adaptation, immunity and metabolism, and native breeds may carry genetic variation important for animal health and robustness in a changing climate.

15.
Sci Rep ; 8(1): 17372, 2018 11 26.
Article in English | MEDLINE | ID: mdl-30478374

ABSTRACT

After a strong demographic decline before World War II, wild boar populations are expanding and the species is now the second-most abundant ungulate in Europe. This increase raises concerns due to wild boar impact on crops and natural ecosystems and as potential vector of diseases. Additionally, wild boar can hybridize with domestic pigs, which could increase health risks and alter wild boar adaptive potential. We analysed 47,148 Single Nucleotide Polymorphisms in wild boar from Europe (292) and the Near East (16), and commercial (44) and local (255) pig breeds, to discern patterns of hybridization across Europe. We identified 33 wild boars with more than 10% domestic ancestry in their genome, mostly concentrated in Austria, Bosnia and Herzegovina, Bulgaria and Serbia. This difference is probably due to contrasting practices, with free-ranging vs. industrial farming but more samples would be needed to investigate larger geographic patterns. Our results suggest hybridization has occurred over a long period and is still ongoing, as we observed recent hybrids. Although wild and domestic populations have maintained their genetic distinctiveness, potential health threats raise concerns and require implementation of management actions and farming practices aimed at reducing contact between wild and domestic pigs.


Subject(s)
Hybridization, Genetic/genetics , Sus scrofa/genetics , Swine/genetics , Animals , Austria , Breeding/methods , Ecosystem , Europe , Middle East , Nucleic Acid Hybridization/genetics , Polymorphism, Single Nucleotide/genetics
16.
Genet Sel Evol ; 49(1): 71, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28934946

ABSTRACT

BACKGROUND: Pigs were domesticated independently in Eastern and Western Eurasia early during the agricultural revolution, and have since been transported and traded across the globe. Here, we present a worldwide survey on 60K genome-wide single nucleotide polymorphism (SNP) data for 2093 pigs, including 1839 domestic pigs representing 122 local and commercial breeds, 215 wild boars, and 39 out-group suids, from Asia, Europe, America, Oceania and Africa. The aim of this study was to infer global patterns in pig domestication and diversity related to demography, migration, and selection. RESULTS: A deep phylogeographic division reflects the dichotomy between early domestication centers. In the core Eastern and Western domestication regions, Chinese pigs show differentiation between breeds due to geographic isolation, whereas this is less pronounced in European pigs. The inferred European origin of pigs in the Americas, Africa, and Australia reflects European expansion during the sixteenth to nineteenth centuries. Human-mediated introgression, which is due, in particular, to importing Chinese pigs into the UK during the eighteenth and nineteenth centuries, played an important role in the formation of modern pig breeds. Inbreeding levels vary markedly between populations, from almost no runs of homozygosity (ROH) in a number of Asian wild boar populations, to up to 20% of the genome covered by ROH in a number of Southern European breeds. Commercial populations show moderate ROH statistics. For domesticated pigs and wild boars in Asia and Europe, we identified highly differentiated loci that include candidate genes related to muscle and body development, central nervous system, reproduction, and energy balance, which are putatively under artificial selection. CONCLUSIONS: Key events related to domestication, dispersal, and mixing of pigs from different regions are reflected in the 60K SNP data, including the globalization that has recently become full circle since Chinese pig breeders in the past decades started selecting Western breeds to improve local Chinese pigs. Furthermore, signatures of ongoing and past selection, acting at different times and on different genetic backgrounds, enhance our insight in the mechanism of domestication and selection. The global diversity statistics presented here highlight concerns for maintaining agrodiversity, but also provide a necessary framework for directing genetic conservation.


Subject(s)
Breeding , Genome-Wide Association Study , Polymorphism, Single Nucleotide/genetics , Sus scrofa/genetics , Animals , Asia , Australia , Europe , Internationality , Selection, Genetic , Sus scrofa/classification , Swine
17.
Behav Processes ; 138: 123-126, 2017 May.
Article in English | MEDLINE | ID: mdl-28274764

ABSTRACT

Hybridization between domestic and wild species is known to widely occur and it is reported to be one of the major causes of the current biodiversity crisis. Despite this, poor attention has been deserved to the behavioural ecology of hybrids, in particular in relation to their social behaviour. We carried out a camera trap study to assess whether phenotypically anomalous colouration in wild boar, i.e. potentially introgressed with domestic pigs, affected the hierarchical structure of wild boar social groups. Chromatically anomalous wild boars (CAWs) were detected in 32 out of 531 wild boar videos. In most videos (75%) CAWs were the latest of the group, independently from their age class and group composition. Aggressions by their wild type fellows were recorded in 31.25% videos; by contrast, no aggression among wild type individuals was observed. The lack of camouflage may expose CAWs, and thus their group, to a higher predation risk, compared to wild type groups. This individual loss of local adaptation may increase predation risk by the wolf or detection by hunters, being maladaptive for the whole social group.


Subject(s)
Animals, Domestic/psychology , Sus scrofa/psychology , Swine/psychology , Aggression , Animals , Hybridization, Genetic , Skin Pigmentation , Social Behavior
18.
Int J Genomics ; 2016: 2152847, 2016.
Article in English | MEDLINE | ID: mdl-27872841

ABSTRACT

Runs of homozygosity (ROH), uninterrupted stretches of homozygous genotypes resulting from parents transmitting identical haplotypes to their offspring, have emerged as informative genome-wide estimates of autozygosity (inbreeding). We used genomic profiles based on 698 K single nucleotide polymorphisms (SNPs) from nine breeds of domestic cattle (Bos taurus) and the European bison (Bison bonasus) to investigate how ROH distributions can be compared within and among species. We focused on two length classes: 0.5-15 Mb to investigate ancient events and >15 Mb to address recent events (approximately three generations). For each length class, we chose a few chromosomes with a high number of ROH, calculated the percentage of times a SNP appeared in a ROH, and plotted the results. We selected areas with distinct patterns including regions where (1) all groups revealed an increase or decrease of ROH, (2) bison differed from cattle, (3) one cattle breed or groups of breeds differed (e.g., dairy versus meat cattle). Examination of these regions in the cattle genome showed genes potentially important for natural and human-induced selection, concerning, for example, meat and milk quality, metabolism, growth, and immune function. The comparative methodology presented here permits visual identification of regions of interest for selection, breeding programs, and conservation.

19.
Front Genet ; 6: 314, 2015.
Article in English | MEDLINE | ID: mdl-26539210

ABSTRACT

Livestock conservation practice is changing rapidly in light of policy developments, climate change and diversifying market demands. The last decade has seen a step change in technology and analytical approaches available to define, manage and conserve Farm Animal Genomic Resources (FAnGR). However, these rapid changes pose challenges for FAnGR conservation in terms of technological continuity, analytical capacity and integrative methodologies needed to fully exploit new, multidimensional data. The final conference of the ESF Genomic Resources program aimed to address these interdisciplinary problems in an attempt to contribute to the agenda for research and policy development directions during the coming decade. By 2020, according to the Convention on Biodiversity's Aichi Target 13, signatories should ensure that "…the genetic diversity of …farmed and domesticated animals and of wild relatives …is maintained, and strategies have been developed and implemented for minimizing genetic erosion and safeguarding their genetic diversity." However, the real extent of genetic erosion is very difficult to measure using current data. Therefore, this challenging target demands better coverage, understanding and utilization of genomic and environmental data, the development of optimized ways to integrate these data with social and other sciences and policy analysis to enable more flexible, evidence-based models to underpin FAnGR conservation. At the conference, we attempted to identify the most important problems for effective livestock genomic resource conservation during the next decade. Twenty priority questions were identified that could be broadly categorized into challenges related to methodology, analytical approaches, data management and conservation. It should be acknowledged here that while the focus of our meeting was predominantly around genetics, genomics and animal science, many of the practical challenges facing conservation of genomic resources are societal in origin and are predicated on the value (e.g., socio-economic and cultural) of these resources to farmers, rural communities and society as a whole. The overall conclusion is that despite the fact that the livestock sector has been relatively well-organized in the application of genetic methodologies to date, there is still a large gap between the current state-of-the-art in the use of tools to characterize genomic resources and its application to many non-commercial and local breeds, hampering the consistent utilization of genetic and genomic data as indicators of genetic erosion and diversity. The livestock genomic sector therefore needs to make a concerted effort in the coming decade to enable to the democratization of the powerful tools that are now at its disposal, and to ensure that they are applied in the context of breed conservation as well as development.

20.
Biochem Genet ; 45(3-4): 305-23, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17333330

ABSTRACT

Among the European fauna, the Sardinian hare (Lepus sp.) is peculiar in that it differs from all other hares inhabiting the continent. Here, we report on the variation of a 461 bp sequence of hypervariable domain 1 of the mitochondrial control region, examined in 42 hares collected throughout Sardinia and compared to the corresponding sequences of different Lepus taxa. Seventeen novel haplotypes were found in the Sardinian population, resulting in a haplotype diversity of 0.840 and a nucleotide diversity of 0.012. As a result of Bayesian and principal coordinates analyses, Sardinian hares were grouped with North African hares, constituting a monophyletic clade that diverges from all other Old World hares, including Cape hares from South Africa and East Asia. Hence, our data agree that populations inhabiting North Africa and Sardinia form a distinct taxon, which could possibly be included in the L. capensis superspecies. Moreover, two corresponding lineages can be found in Sardinia and Tunisia, providing evidence of a common origin of the two populations and thus supporting the hypothesis that North African hares were introduced into the island in historical times. Our data show that the two lineages differ in their geographic distribution throughout the island and that the wild Sardinian population also shows the signature of a postintroduction demographic expansion.


Subject(s)
DNA, Mitochondrial/genetics , Genetic Variation/genetics , Hares/genetics , Phylogeny , Regulatory Sequences, Nucleic Acid/genetics , Animals , Base Sequence , Geography , Haplotypes , Italy , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL
...