Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters










Publication year range
1.
NPJ Parkinsons Dis ; 10(1): 83, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38615030

ABSTRACT

Mitochondrial dysfunction and reactive oxygen species (ROS) accumulation within the substantia nigra pars compacta (SNpc) are central drivers of dopaminergic (DA) neuron death in Parkinson's disease (PD). Guanylyl cyclases and their second messenger cyclic (c)GMP support mitochondrial function, protecting against ROS and promoting cell survival in several tissues. However, the role of the guanylyl cyclase-cGMP axis in defining the vulnerability of DA neurons in the SNpc in PD remains unclear, in part due to the challenge of manipulating cGMP levels selectively in midbrain DA neurons. In that context, guanylyl cyclase C (GUCY2C), a receptor primarily expressed by intestinal epithelial cells, was discovered recently in midbrain DA neurons. Here, we demonstrate that GUCY2C promotes mitochondrial function, reducing oxidative stress and protecting DA neurons from degeneration in the 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine (MPTP) mouse model. GUCY2C is overexpressed in the SNpc in PD patients and in mice treated with MPTP, possibly reflecting a protective response to oxidative stress. Moreover, cGMP signaling protects against oxidative stress, mitochondrial impairment, and cell death in cultured DA neurons. These observations reveal a previously unexpected role for the GUCY2C-cGMP signaling axis in controlling mitochondrial dysfunction and toxicity in SNpc DA neurons, highlighting the therapeutic potential of targeting DA neuron GUCY2C to prevent neurodegeneration in PD.

2.
Med Res Rev ; 2024 03 18.
Article in English | MEDLINE | ID: mdl-38500405

ABSTRACT

Over the past few decades, there has been a notable increase in the global burden of central nervous system (CNS) diseases. Despite advances in technology and therapeutic options, neurological and neurodegenerative disorders persist as significant challenges in treatment and cure. Recently, there has been a remarkable surge of interest in extracellular vesicles (EVs) as pivotal mediators of intercellular communication. As carriers of molecular cargo, EVs demonstrate the ability to traverse the blood-brain barrier, enabling bidirectional communication. As a result, they have garnered attention as potential biomarkers and therapeutic agents, whether in their natural form or after being engineered for use in the CNS. This review article aims to provide a comprehensive introduction to EVs, encompassing various aspects such as their diverse isolation methods, characterization, handling, storage, and different routes for EV administration. Additionally, it underscores the recent advances in their potential applications in neurodegenerative disorder therapeutics. By exploring their unique capabilities, this study sheds light on the promising future of EVs in clinical research. It considers the inherent challenges and limitations of these emerging applications while incorporating the most recent updates in the field.

3.
Transl Stroke Res ; 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37917400

ABSTRACT

While treatments exist for the acute phase of stroke, there are limited options for patients with chronic infarcts and long-term disability. Allogenic mesenchymal stem cells (alloMSCs) show promise for the treatment of stroke soon after ischemic injury. There is, however, no information on the use of autologous MSCs (autoMSCs), delivered intracerebrally in rats with a chronic infarct. In this study, rats underwent middle cerebral artery occlusion (MCAO) to induce stroke followed by bone marrow aspiration and MSC expansion in a closed bioreactor. Four weeks later, brain MRI was obtained and autoMSCs (1 × 106, 2.5 × 106 or 5 × 106; n = 6 each) were stereotactically injected into the peri-infarct and compared to controls (MCAO only; MCAO + PBS; n = 6-9). Behavior was assessed using the modified neurological severity score (mNSS). For comparison, an additional cohort of MCAO rats were implanted with 2.5 × 106 alloMSCs generated from a healthy rat. All doses of autoMSCs produced significant improvement (54-70%) in sensorimotor function 60 days later. In contrast, alloMSCs improved only 31.7%, similar to that in PBS controls 30%. Quantum dot-labeled auto/alloMSCs were found exclusively at the implantation site throughout the post-transplantation period with no tumor formation on MRI or Ki67 staining of engrafted MSCs. Small differences in stroke volume and no differences in corpus callosum width were observed after MSC treatment. Stroke-induced glial reactivity in the peri-infarct was long-lasting and unabated by auto/alloMSC transplantation. These studies suggest that intracerebral transplantation of autoMSCs as compared to alloMSCs may be a promising treatment in chronic stroke.

4.
Res Sq ; 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37886524

ABSTRACT

Mitochondrial dysfunction and reactive oxygen species (ROS) accumulation within the substantia nigra pars compacta (SNpc) are central drivers of dopaminergic (DA) neuron death in Parkinson's disease (PD). Guanylyl cyclases, and their second messengers cyclic (c)GMP, support mitochondrial function, protecting against ROS and promoting cell survival in a number of tissues. However, the role of the guanylyl cyclase-cGMP axis in defining the vulnerability of DA neurons in the SNpc in PD remains unclear, in part due to the challenge of manipulating cGMP levels selectively in midbrain DA neurons. In that context, guanylyl cyclase C (GUCY2C), a receptor primarily expressed by intestinal epithelial cells, was discovered recently in midbrain DA neurons. Here, we demonstrate that GUCY2C promotes mitochondrial function, reducing oxidative stress and protecting DA neurons from degeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of neurodegeneration. GUCY2C is overexpressed in the SNpc in PD patients and in mice treated with MPTP, possibly reflecting a protective response to oxidative stress. Moreover, cGMP signaling protects against oxidative stress, mitochondrial impairment, and cell death in cultured DA neurons. These observations reveal a previously unexpected role for the GUCY2C-cGMP signaling axis in controlling mitochondrial dysfunction and toxicity in nigral DA neurons, highlighting the therapeutic potential of targeting DA neuron GUCY2C to prevent neurodegeneration in PD.

5.
Exp Neurol ; 370: 114548, 2023 12.
Article in English | MEDLINE | ID: mdl-37769794

ABSTRACT

Chordin-like 1 (Chrdl1) is an astrocyte-secreted protein that regulates synaptic maturation, and limits plasticity via GluA2-containing AMPA receptors (AMPARs). It was demonstrated that Chrdl1 expression is very heterogeneous throughout the brain, and it is enriched in astrocytes in cortical layers 2/3, with peak expression in the visual cortex at postnatal day 14. In response to ischemic stroke, Chrdl1 is upregulated during the acute and sub-acute phases in the peri-infarct region, potentially hindering recovery after stroke. Here, we used photothrombosis to model ischemic stroke in the motor cortex of adult male and female mice. In this study, we demonstrate that elimination of Chrdl1 in a global knock-out mouse reduces apoptotic cell death at early post-stroke stages and prevents ischemia-driven synaptic loss of AMPA receptors at later time points, all contributing to faster motor recovery. This suggests that synapse-regulating astrocyte-secreted proteins such as Chrdl1 have therapeutic potential to aid functional recovery after an ischemic injury.


Subject(s)
Ischemic Stroke , Stroke , Mice , Male , Female , Animals , Receptors, AMPA/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Eye Proteins/metabolism , Nerve Tissue Proteins/metabolism
6.
Neuropathology ; 43(5): 391-395, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36786200

ABSTRACT

Pilocytic astrocytoma (PA), a central nervous system (CNS) World Health Organization grade 1 tumor, is mainly seen in children or young adults aged 5-19. Surgical resection often provides excellent outcomes, but residual tumors may still remain. This low-grade tumor is well recognized for its classic radiological and morphological features; however, some unique molecular findings have been unveiled by the application of next-generation sequencing (NGS). Among the genetic abnormalities identified in this low-grade tumor, increasing evidence indicates that BRAF alterations, especially BRAF fusions, play an essential role in PA tumorigenesis. Among the several fusion partner genes identified in PAs, KIAA1549-BRAF fusion is notably the most common detectable genetic alteration, especially in the cerebellar PAs. Here, we report a case of a young adult patient with a large, right-sided posterior fossa cerebellar and cerebellopontine angle region mass consistent with a PA. Of note, NGS detected a novel GNAI3-BRAF fusion, which results in an in-frame fusion protein containing the kinase domain of BRAF. This finding expands the knowledge of BRAF fusions in the tumorigenesis of PAs, provides an additional molecular signature for diagnosis, and a target for future therapy.


Subject(s)
Astrocytoma , Brain Neoplasms , Central Nervous System Neoplasms , Child , Young Adult , Humans , Proto-Oncogene Proteins B-raf/genetics , Astrocytoma/diagnostic imaging , Astrocytoma/genetics , Astrocytoma/metabolism , Central Nervous System Neoplasms/genetics , Mutation , Carcinogenesis , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
8.
J Neurosci ; 41(25): 5331-5337, 2021 06 23.
Article in English | MEDLINE | ID: mdl-33958488

ABSTRACT

In 1981, I published a paper in the first issue of The Journal of Neuroscience with my postdoctoral mentor, Richard Bunge. At that time, the long-standing belief that each neuron expressed only one neurotransmitter, known as Dale's Principle (Dale, 1935), was being hotly debated following a report by French embryologist Nicole Le Douarin showing that neural crest cells destined for one transmitter phenotype could express characteristics of another if transplanted to alternate sites in the developing embryo (Le Douarin, 1980). In the Bunge laboratory, we were able to more directly test the question of phenotypic plasticity in the controlled environment of the tissue culture dish. Thus, in our paper, we grew autonomic catecholaminergic neurons in culture under conditions which promoted the acquisition of cholinergic traits and showed that cells did not abandon their inherited phenotype to adopt a new one but instead were capable of dual transmitter expression. In this Progressions article, I detail the path that led to these findings and how this study impacted the direction I followed for the next 40 years. This is my journey from phenotypic plasticity to the promise of a stem cell therapy.


Subject(s)
Adaptation, Physiological , Neurology/history , Neurons/cytology , Stem Cell Transplantation/history , Animals , Embryonic Stem Cells/cytology , History, 20th Century , History, 21st Century , Humans , Neural Stem Cells/cytology , Pluripotent Stem Cells/cytology , Stem Cell Transplantation/methods
9.
Stem Cell Res ; 53: 102332, 2021 05.
Article in English | MEDLINE | ID: mdl-33857832

ABSTRACT

When studying patient specific induced pluripotent stem cells (iPS cells) as a disease model, the ideal control is an isogenic line that has corrected the point mutation, instead of iPS cells from siblings or other healthy subjects. However, repairing a point mutation in iPS cells even with the newly developed CRISPR-Cas9 technique remains difficult and time-consuming. Here we report a strategy that makes the Cas9 "knock-in" methodology both hassle-free and error-free. Instead of selecting a Cas9 recognition site close to the point mutation, we chose a site located in the nearest intron. We constructed a donor template with the fragment containing the corrected point mutation as one of the homologous recombination arms flanking a PGK-PuroR cassette. After selection with puromycin, positive clones were identified and further transfected with a CRE vector to remove the PGK-PuroR cassette. Using this methodology, we successfully repaired the point mutation G2019S of the LRRK2 gene in a Parkinson Disease (PD) patient iPS line and the point mutation R329H of the AARS1 gene in a Charcot-Marie-Tooth disease (CMT) patient iPS line. These isogenic iPS lines are ideal as a control in future studies.


Subject(s)
Induced Pluripotent Stem Cells , CRISPR-Cas Systems/genetics , Clone Cells , Clustered Regularly Interspaced Short Palindromic Repeats , Homologous Recombination , Humans , Mutation , Point Mutation
10.
Exp Neurol ; 334: 113468, 2020 12.
Article in English | MEDLINE | ID: mdl-32966805

ABSTRACT

A major portion of individuals affected by traumatic spinal cord injury (SCI) experience one or more types of chronic neuropathic pain (NP), which is often intractable to currently available treatments. The availability of reliable behavioral assays in pre-clinical models of SCI-induced NP is therefore critical to assess the efficacy of new potential therapies. Commonly used assays to evaluate NP-related behavior in rodents, such as Hargreaves thermal and von Frey mechanical testing, rely on the withdrawal response to an evoked stimulus. However, other assays that test spontaneous/non-evoked NP-related behavior or supraspinal aspects of NP would be highly useful for a more comprehensive assessment of NP following SCI. The Mouse Grimace Scale (MGS) is a tool to assess spontaneous, supraspinal pain-like behaviors in mice; however, the assay has not been characterized in a mouse model of SCI-induced chronic NP, despite the critical importance of mouse genetics as an experimental tool. We found that beginning 2 weeks after cervical contusion, SCI mice exhibited increased facial grimace features compared to laminectomy-only control mice, and this grimace phenotype persisted to the chronic time point of 5 weeks post-injury. We also found a significant relationship between facial grimace score and the evoked forepaw withdrawal response in both the Hargreaves and von Frey tests at 5 weeks post-injury when both laminectomy-only and SCI mice were included in the analysis. However, within only the SCI group, there was no correlation between grimace score and Hargreaves or von Frey responses. These results indicate both that facial grimace analysis can be used as an assay of spontaneous NP-related behavior in the mouse model of SCI and that the information provided by the MGS may be different than that provided by evoked tests of sensory function.


Subject(s)
Facial Expression , Neuralgia/psychology , Pain Measurement/methods , Pain Measurement/psychology , Spinal Cord Injuries/psychology , Animals , Cervical Vertebrae/injuries , Female , Male , Mice , Mice, Inbred C57BL , Neuralgia/etiology , Neuralgia/physiopathology , Spinal Cord Injuries/complications , Spinal Cord Injuries/physiopathology
11.
Cell Rep ; 27(13): 3741-3751.e4, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31242408

ABSTRACT

Adult hippocampal neurogenesis has been reported to be decreased, increased, or not changed in Alzheimer's disease (AD) patients and related transgenic mouse models. These disparate findings may relate to differences in disease stage, or the presence of seizures, which are associated with AD and can stimulate neurogenesis. In this study, we investigate a transgenic mouse model of AD that exhibits seizures similarly to AD patients and find that neurogenesis is increased in early stages of disease, as spontaneous seizures became evident, but is decreased below control levels as seizures recur. Treatment with the antiseizure drug levetiracetam restores neurogenesis and improves performance in a neurogenesis-associated spatial discrimination task. Our results suggest that seizures stimulate, and later accelerate the depletion of, the hippocampal neural stem cell pool. These results have implications for AD as well as any disorder accompanied by recurrent seizures, such as epilepsy.


Subject(s)
Alzheimer Disease/metabolism , Hippocampus/metabolism , Neural Stem Cells/metabolism , Neurogenesis , Seizures/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Animals , Disease Models, Animal , Hippocampus/pathology , Humans , Mice , Mice, Transgenic , Neural Stem Cells/pathology , Seizures/genetics , Seizures/pathology
12.
Glia ; 67(8): 1542-1557, 2019 08.
Article in English | MEDLINE | ID: mdl-31025779

ABSTRACT

Parkinson's disease (PD) is characterized by the selective degeneration of dopamine (DA) neurons of the substantia nigra pars compacta (SN), while the neighboring ventral tegmental area (VTA) is relatively spared. The mechanisms underlying this selectivity are not fully understood. Here, we demonstrate a vital role for subregional astrocytes in the protection of VTA DA neurons. We found that elimination of astrocytes in vitro exposes a novel vulnerability of presumably protected VTA DA neurons to the PD mimetic toxin MPP+ , as well as exacerbation of SN DA neuron vulnerability. Conversely, VTA astrocytes protected both VTA and SN DA neurons from MPP+ toxicity in a dose dependent manner, and this protection was mediated via a secreted molecule. RNAseq analysis of isolated VTA and SN astrocytes demonstrated a vast array of transcriptional differences between these two closely related populations demonstrating regional heterogeneity of midbrain astrocytes. We found that GDF15, a member of the TGFß superfamily which is expressed 230-fold higher in VTA astrocytes than SN, recapitulates neuroprotection of both rat midbrain and iPSC-derived DA neurons, whereas its knockdown conversely diminished this effect. Neuroprotection was likely mediated through the GRFAL receptor expressed on DA neurons. Together; these results suggest that subregional differences in astrocytes underlie the selective degeneration or protection of DA neurons in PD.


Subject(s)
Astrocytes/physiology , Nerve Degeneration/physiopathology , Neuroprotection/physiology , Parkinsonian Disorders/physiopathology , Animals , Cells, Cultured , Coculture Techniques , Dopaminergic Neurons/physiology , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Growth Differentiation Factor 15/metabolism , Humans , Induced Pluripotent Stem Cells/physiology , Pars Compacta/physiopathology , Rats, Transgenic , Ventral Tegmental Area/physiopathology
13.
Brain Res ; 1718: 231-241, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31034813

ABSTRACT

BACKGROUND: The sphenopalatine ganglion (SPG) is a vasoactive mediator of the anterior intracranial circulation in mammals. SPG stimulation has been demonstrated to alter blood-brain barrier (BBB) permeability, although this phenomenon is not well characterized. OBJECTIVE: To determine the effect of SPG stimulation on the BBB using rat models. METHODS: Extravasation of fluorescent tracer 70 kDa FITC-dextran into rat brain specimens was measured across a range of stimulation parameters to assess BBB permeability. Tight junction (TJ) morphology was compared by assessing differences in the staining of proteins occludin and ZO-1 and analyzing ultrastructural changes on transmission electron microscopy (TEM) between stimulated and unstimulated specimens. RESULTS: SPG stimulation at 10 Hz maximally increased BBB permeability, exhibiting a 6-fold increase in fluorescent traceruptake (1.66% vs 0.28%, p < 0.0001). This effect was reversed 4-hours after stimulation (0.36% uptake, p = 0.99). High-frequency stimulation at 20 Hz and 200 Hz did not increase tracer extravasation, (0.26% and 0.28% uptake, p = >0.999 and p = 0.998, respectively). Stimulation was associated a significant decrease in the colocalization of occludin and ZO-1 with endothelial markers in stimulated brains compared to control (74.6% vs. 39.7% and 67.2% vs. 60.4% colocalization, respectively, p < 0.0001), and ultrastructural changes in TJ morphology associated with increased BBB permeability were observed on TEM. CONCLUSION: This study is the first to show a reversible, frequency-dependent increase in BBB permeability with SPG stimulation and introduces a putative mechanism of action through TJ disruption. Bypassing the BBB with SPG stimulation could enable new paradigms in delivering therapeutics to the CNS. Further study of this technology is needed.


Subject(s)
Blood-Brain Barrier/metabolism , Pterygopalatine Fossa/innervation , Pterygopalatine Fossa/metabolism , Animals , Electric Stimulation/methods , Female , Occludin/metabolism , Permeability/drug effects , Rats , Rats, Sprague-Dawley , Tight Junction Proteins/metabolism , Tight Junctions/drug effects , Zonula Occludens-1 Protein/metabolism
14.
Small GTPases ; 10(1): 26-32, 2019 01.
Article in English | MEDLINE | ID: mdl-28125332

ABSTRACT

In this commentary we discuss a paper we published recently on the activities of the GTPase RhoA during neural differentiation of murine embryonic stem cells, and relate our findings to previous studies. We narrate how we found that RhoA impedes neural differentiation by inhibiting the production as well as the secretion of noggin, a soluble factor that antagonizes bone morphogenetic protein. We discuss how the questions we tried to address shaped the study, and how embryonic stem cells isolated from a genetically modified mouse model devoid of Syx, a RhoA-specific guanine exchange factor, were used to address them. We detail several signaling pathways downstream of RhoA that are hindered by the absence of Syx, and obstructed by retinoic acid, resulting in an increase of noggin production; we explain how the lower RhoA activity and, consequently, the sparser peri-junctional stress fibers in Syx-/- cells facilitated noggin secretion; and we report unpublished results showing that pharmacological inhibition of RhoA accelerates the neuronal differentiation of human embryonic stem cells. Finally, we identify signaling mechanisms in our recent study that warrant further study, and speculate on the possibility of manipulating RhoA signaling in combination with other pathways to drive the differentiation of neuronal subtypes.


Subject(s)
Embryonic Stem Cells/cytology , Neurogenesis , rhoA GTP-Binding Protein/physiology , Animals , Carrier Proteins/physiology , Embryonic Stem Cells/physiology , Humans , Smad1 Protein/physiology , rhoA GTP-Binding Protein/antagonists & inhibitors
15.
Stem Cells ; 37(3): 395-406, 2019 03.
Article in English | MEDLINE | ID: mdl-30431198

ABSTRACT

It is well documented that adult neural stem cells (NSCs) residing in the subventricular zone (SVZ) and the subgranular zone (SGZ) are induced to proliferate and differentiate into new neurons after injury such as stroke and hypoxia. However, the role of injury-related cues in driving this process and the means by which they communicate with NSCs remains largely unknown. Recently, the coupling of neurogenesis and angiogenesis and the extensive close contact between vascular cells and other niche cells, known as the neurovascular unit (NVU), has attracted interest. Further facilitating communication between blood and NSCs is a permeable blood-brain-barrier (BBB) present in most niches, making vascular cells a potential conduit between systemic signals, such as vascular endothelial growth factor (VEGF), and NSCs in the niche, which could play an important role in regulating neurogenesis. We show that the leaky BBB in stem cell niches of the intact and stroke brain can respond to circulating VEGF165 to drive induction of the Notch ligand DLL4 (one of the most important cues in angiogenesis) in endothelial cells (ECs), pericytes, and further induce significant proliferation and neurogenesis of stem cells. Stem Cells 2019;37:395-406.


Subject(s)
Adult Stem Cells/metabolism , Blood-Brain Barrier/metabolism , Neovascularization, Physiologic , Neural Stem Cells/metabolism , Neurogenesis , Receptors, Notch/metabolism , Signal Transduction , Adult Stem Cells/cytology , Animals , Blood-Brain Barrier/cytology , Cell Line , Male , Mice , Neural Stem Cells/cytology , Rats , Rats, Sprague-Dawley , Vascular Endothelial Growth Factor A/metabolism
16.
J Neuroinflammation ; 15(1): 139, 2018 May 11.
Article in English | MEDLINE | ID: mdl-29751760

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is characterized by selective degeneration of dopaminergic (DA) neurons of the substantia nigra pars compacta (SN) while neighboring ventral tegmental area (VTA) DA neurons are relatively spared. Mechanisms underlying the selective protection of the VTA and susceptibility of the SN are still mostly unknown. Here, we demonstrate the importance of balance between astrocytes and microglia in the susceptibility of SN DA neurons to the PD mimetic toxin 1-methyl-4-phenylpyridinium (MPP+). METHODS: Previously established methods were used to isolate astrocytes and microglia from the cortex (CTX), SN, and VTA, as well as embryonic midbrain DA neurons from the SN and VTA. The transcriptional profile of isolated microglia was examined for 21 canonical pro- and anti-inflammatory cytokines by qRT-PCR with and without MPP+ exposure. Homo- and heterotypic co-cultures of neurons and astrocytes were established, and the effect of altering the ratio of astrocytes and microglia in vitro on the susceptibility of midbrain DA neurons to the PD mimetic toxin MPP+ was investigated. RESULTS: We found that regionally isolated microglia (SN, VTA, CTX) exhibit basal differences in their cytokine profiles and that activation of these microglia with MPP+ results in differential cytokine upregulation. The addition of microglia to cultures of SN neurons and astrocytes was not sufficient to cause neurodegeneration; however, when challenged with MPP+, all regionally isolated microglia resulted in exacerbation of MPP+ toxicity which was alleviated by inhibition of microglial activation. Furthermore, we demonstrated that isolated VTA, but not SN, astrocytes were able to mediate protection of both SN and VTA DA neurons even in the presence of exacerbatory microglia; however, this protection could be reversed by increasing the numbers of microglia present. CONCLUSION: These results suggest that the balance of astrocytes and microglia within the midbrain is a key factor underlying the selective vulnerability of SN DA neurons seen in PD pathogenesis and that VTA astrocytes mediate protection of DA neurons which can be countered by greater numbers of deleterious microglia.


Subject(s)
Astrocytes/pathology , Dopaminergic Neurons/pathology , Microglia/pathology , Nerve Degeneration/pathology , Parkinson Disease/pathology , Transcription, Genetic/physiology , 1-Methyl-4-phenylpyridinium/toxicity , Animals , Astrocytes/drug effects , Coculture Techniques , Dopaminergic Neurons/drug effects , Female , Mesencephalon/drug effects , Mesencephalon/pathology , Microglia/drug effects , Nerve Degeneration/chemically induced , Nerve Degeneration/genetics , Parkinson Disease/genetics , Pregnancy , Rats , Rats, Transgenic , Transcription, Genetic/drug effects
17.
Neurobiol Dis ; 115: 49-58, 2018 07.
Article in English | MEDLINE | ID: mdl-29605425

ABSTRACT

Stroke patients are at increased risk for recurrent stroke and development of post-stroke dementia. In this study, we investigated the effects of recurrent stroke on adult brain neurogenesis using a novel rat model of recurrent middle cerebral artery occlusion (MCAO) developed in our laboratory. Using BrdU incorporation, activation and depletion of stem cells in the subgranular zone (SGZ) and subventricular zone (SVZ) were assessed in control rats and rats after one or two strokes. In vitro neurosphere assay was used to assess the effects of plasma from normal and stroke rats. Also, EM and permeability studies were used to evaluate changes in the blood-brain-barrier (BBB) of the SGZ after recurrent stroke. We found that proliferation and neurogenesis was activated 14 days after MCAO. This was correlated with increased permeability in the BBB to factors which increase proliferation in a neurosphere assay. However, with each stroke, there was a stepwise decrease of proliferating stem cells and impaired neurogenesis on the ipsilateral side. On the contralateral side, this process stabilized after a first stroke. These studies indicate that stem cells are activated after MCAO, possibly after increased access to systemic stroke-related factors through a leaky BBB. However, the recruitment of stem cells for neurogenesis after stroke results in a stepwise ipsilateral decline with each ischemic event, which could contribute to post-stroke dementia.


Subject(s)
Blood-Brain Barrier/metabolism , Brain Ischemia/metabolism , Cell Proliferation/physiology , Neural Stem Cells/metabolism , Neurogenesis/physiology , Stroke/metabolism , Animals , Animals, Newborn , Blood-Brain Barrier/pathology , Brain Ischemia/pathology , Cells, Cultured , Male , Neural Stem Cells/pathology , Rats , Rats, Sprague-Dawley , Recurrence , Stroke/pathology
18.
Proc Natl Acad Sci U S A ; 115(7): 1635-1640, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29386392

ABSTRACT

Mutations in LRRK2 are known to be the most common genetic cause of sporadic and familial Parkinson's disease (PD). Multiple lines of LRRK2 transgenic or knockin mice have been developed, yet none exhibit substantial dopamine (DA)-neuron degeneration. Here we develop human tyrosine hydroxylase (TH) promoter-controlled tetracycline-sensitive LRRK2 G2019S (GS) and LRRK2 G2019S kinase-dead (GS/DA) transgenic mice and show that LRRK2 GS expression leads to an age- and kinase-dependent cell-autonomous neurodegeneration of DA and norepinephrine (NE) neurons. Accompanying the loss of DA neurons are DA-dependent behavioral deficits and α-synuclein pathology that are also LRRK2 GS kinase-dependent. Transmission EM reveals that that there is an LRRK2 GS kinase-dependent significant reduction in synaptic vesicle number and a greater abundance of clathrin-coated vesicles in DA neurons. These transgenic mice indicate that LRRK2-induced DA and NE neurodegeneration is kinase-dependent and can occur in a cell-autonomous manner. Moreover, these mice provide a substantial advance in animal model development for LRRK2-associated PD and an important platform to investigate molecular mechanisms for how DA neurons degenerate as a result of expression of mutant LRRK2.


Subject(s)
Disease Models, Animal , Dopamine/metabolism , Dopaminergic Neurons/pathology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/physiology , Neurodegenerative Diseases/pathology , Norepinephrine/metabolism , Age Factors , Animals , Behavior, Animal , Dopaminergic Neurons/metabolism , Humans , Male , Mice , Mice, Transgenic , Motor Activity , Mutation , Neurodegenerative Diseases/metabolism , alpha-Synuclein/metabolism
19.
J Neurotrauma ; 35(18): 2195-2207, 2018 09 15.
Article in English | MEDLINE | ID: mdl-29471717

ABSTRACT

Populations of neural stem cells (NSCs) reside in a number of defined niches in the adult central nervous system (CNS) where they continually give rise to mature cell types throughout life, including newly born neurons. In addition to the prototypical niches of the subventricular zone (SVZ) and subgranular zone (SGZ) of the hippocampal dentate gyrus, novel stem cell niches that are also neurogenic have recently been identified in multiple midline structures, including circumventricular organs (CVOs) of the brain. These resident NSCs serve as a homeostatic source of new neurons and glial cells under intact physiological conditions. Importantly, they may also have the potential for reparative processes in pathological states such as traumatic spinal cord injury (SCI) and traumatic brain injury (TBI). As the response in these novel CVO stem cell niches has been characterized after stroke but not following SCI or TBI, we quantitatively assessed cell proliferation and the neuronal and glial lineage fate of resident NSCs in three CVO nuclei-area postrema (AP), median eminence (ME), and subfornical organ (SFO) -in rat models of cervical contusion-type SCI and controlled cortical impact (CCI)-induced TBI. Using bromodeoxyuridine (BrdU) labeling of proliferating cells, we find that TBI significantly enhanced proliferation in AP, ME, and SFO, whereas cervical SCI had no effects at early or chronic time-points post-injury. In addition, SCI did not alter NSC differentiation profile into doublecortin-positive neuroblasts, GFAP-expressing astrocytes, or Olig2-labeled cells of the oligodendrocyte lineage within AP, ME, or SFO at both time-points. In contrast, CCI induced a pronounced increase in Sox2- and doublecortin-labeled cells in the AP and Iba1-labeled microglia in the SFO. Lastly, plasma derived from CCI animals significantly increased NSC expansion in an in vitro neurosphere assay, whereas plasma from SCI animals did not exert such an effect, suggesting that signaling factors present in blood may be relevant to stimulating CVO niches after CNS injury and may explain the differential in vivo effects of SCI and TBI on the novel stem cell niches.


Subject(s)
Brain Injuries, Traumatic/physiopathology , Circumventricular Organs/cytology , Neural Stem Cells/physiology , Spinal Cord Injuries/physiopathology , Stem Cell Niche , Animals , Cell Differentiation/physiology , Cell Proliferation/physiology , Cervical Cord , Doublecortin Protein , Female , Neurogenesis/physiology , Rats , Rats, Sprague-Dawley
20.
Cell Rep ; 19(2): 295-306, 2017 04 11.
Article in English | MEDLINE | ID: mdl-28402853

ABSTRACT

The role of chromatin structure in lineage commitment of multipotent hematopoietic progenitors (HPCs) is presently unclear. We show here that CD34+ HPCs possess a post-replicative chromatin globally devoid of the repressive histone mark H3K27me3. This H3K27-unmodified chromatin is required for recruitment of lineage-determining transcription factors (TFs) C/EBPα, PU.1, and GATA-1 to DNA just after DNA replication upon cytokine-induced myeloid or erythroid commitment. Blocking DNA replication or increasing H3K27me3 levels prevents recruitment of these TFs to DNA and suppresses cytokine-induced erythroid or myeloid differentiation. However, H3K27me3 is rapidly associated with nascent DNA in more primitive human and murine HPCs. Treatment of these cells with instructive cytokines leads to a significant delay in accumulation of H3K27me3 in nascent chromatin due to activity of the H3K27me3 demethylase UTX. Thus, HPCs utilize special mechanisms of chromatin modification for recruitment of specific TFs to DNA during early stages of lineage specification.


Subject(s)
Cell Differentiation/genetics , Hematopoiesis/genetics , Hematopoietic Stem Cells/cytology , Jumonji Domain-Containing Histone Demethylases/genetics , Animals , Antigens, CD34/biosynthesis , CCAAT-Enhancer-Binding Protein-alpha/genetics , Cell Lineage/genetics , Chromatin/genetics , DNA Replication/genetics , GATA1 Transcription Factor/genetics , Humans , Jumonji Domain-Containing Histone Demethylases/metabolism , Mice , Proto-Oncogene Proteins/genetics , Trans-Activators/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...