Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Foods ; 12(17)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37685219

ABSTRACT

Rapeseed meal (RSM) is a by-product of rapeseed oil extraction and is a rich source of bioactive compounds, including proteins and antioxidants. This study compared two methods for extracting antioxidants from RSM: conventional ethanol Soxhlet extraction and supercritical CO2 extraction. These procedures were applied to both native RSM and RSM after protein removal to evaluate their bio-compound composition and potential applications. HPLC-DAD, NMR, and GC/MS analyses revealed a rich polyphenolic profile in the extracts, including the presence of sinapic acid. The concentration of sinapic acid varied depending on the extraction method used. The anti-radical activity of the extracts was also analysed using the DPPH assay, which confirmed the potential of RSM as a source of antioxidants for use in cosmetics, food, and pharmaceutical formulations.

2.
Molecules ; 28(15)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37570801

ABSTRACT

A gold-catalyzed protocol to obtain functionalized 3H-pyrrolo [1,2,3-de] quinoxalines from suitable substituted N-alkynyl indoles has been proposed. The mild reaction conditions were revealed to be compatible with different functional groups, including halogen, alkoxyl, cyano, ketone, and ester, allowing the isolation of title compounds with yields from good to high. A reaction mechanism has been proposed, and theoretical calculations have been provided to rationalize the final step of the hypothesized reaction mechanism. As quinoxaline-containing polycyclic compounds, this class of molecules may represent a valuable template in medicinal chemistry and material science.

3.
J Org Chem ; 88(11): 6857-6867, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37162477

ABSTRACT

Experimental results and computational insights explain the key role of transition-metal catalysis/Brønsted acid synergism in the achievement of the sequential regioselective direct heteroarylation/cyclocondensation reactions of ß-(2-aminophenyl)-α,ß-ynones with a variety of electron-rich aromatic heterocyclic/arenes to afford quinoline-(hetero)aromatic hybrids. The first approach to the synthesis of 4-(1H-pyrrol-2-yl)quinolines is described. The effectiveness of various transition metals is compared.

4.
RSC Adv ; 13(15): 10090-10096, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37006346

ABSTRACT

The synthesis of 2,3-dihydropyrazino[1,2-a]indol-4(1H)-ones from the sequential reaction of amino acid methyl esters with readily available indole-2-ylmethyl acetates is described. The reaction proceeds in situ under basic conditions of highly unstable and reactive 2-alkylideneindolenines followed by Michael-type addition of α-amino acid methyl esters/intramolecular cyclization.

5.
Foods ; 12(8)2023 Apr 09.
Article in English | MEDLINE | ID: mdl-37107387

ABSTRACT

Fruit seeds belonging to the pomegranate cultivar "Granata" were subjected to extraction and oily component analysis, with the aim of obtaining information about their composition. The presence of conjugated isomers of linolenic acid (CLNA isomers) in the oily phase extracted from the seeds gives a high added value to this part of the fruit, which is too often considered and treated as waste. The separated seeds were subjected to a classic Soxhlet extraction with n-hexane or extraction with supercritical CO2, assisted by ethanol. The resulting oils were evaluated by 1H and 13C-NMR and AP-MALDI-MS techniques. Differences in the triacylglycerols composition, with particular regard to punicic acid and other CLNA content, were studied in depth. Results showed the prevalence of punicic acid in the triacylglycerol mixture up to the 75%, with clear preponderance in the extract by supercritical fluids. Consequently, other CLNA isomers are, altogether, two-fold less represented in the supercritical extract than in the Soxhlet one. The two oily residues were subjected to solid phase extraction (SPE) and to HPLC-DAD analysis for the polyphenolic isolation and characterization. In addition to HPLC analysis, which showed different content and composition, DPPH analysis to evaluate the antiradical potential showed that the extract obtained with supercritical CO2 was much more active.

6.
Molecules ; 27(21)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36364405

ABSTRACT

The plants of the Moraceae family are producers of a great variety of polyphenolic natural products. Among these, the Diels-Alder type adducts (DAAs) are endowed with a unique cyclohexene scaffold, since they are biosynthesized from [4+2] cycloaddition of different polyphenolic precursors such as chalcones and dehydroprenyl polyphenols. To date, more than 150 DAAs have been isolated and characterized from Moraceous and related plants. The main source of DAAs is the mulberry root bark, also known as "Sang-Bai-Pi" in Traditional Chinese Medicine, but they have also been isolated from root bark, stem barks, roots, stems or twigs, leaves, and callus cultures of Moraceous and other related plants. Since 1980, many biological activities of DAAs have been identified, including anti-HIV, antimicrobial, anti-inflammatory, and anticancer ones. For these reasons, natural DAAs have been intensively investigated, and a lot of efforts have been made to study their biosynthesis and to establish practical synthetic access. In this review, we summarized all the updated knowledge on biosynthesis, chemoenzymatic synthesis, racemic and enantioselective total synthesis, and biological activity of natural DAAs from Moraceous and related plants.


Subject(s)
Chalcones , Morus , Polyphenols , Medicine, Chinese Traditional , Antioxidants , Anti-Inflammatory Agents
7.
Int J Mol Sci ; 23(12)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35742969

ABSTRACT

Amine oxidases are enzymes belonging to the class of oxidoreductases that are widespread, from bacteria to humans. The amine oxidase from Lathyrus cicera has recently appeared in the landscape of biocatalysis, showing good potential in the green synthesis of aldehydes. This enzyme catalyzes the oxidative deamination of a wide range of primary amines into the corresponding aldehydes but its use as a biocatalyst is challenging due to the possible inactivation that might occur at high product concentrations. Here, we show that the enzyme's performance can be greatly improved by immobilization on solid supports. The best results are achieved using amino-functionalized magnetic microparticles: the immobilized enzyme retains its activity, greatly improves its thermostability (4 h at 75 °C), and can be recycled up to 8 times with a set of aromatic ethylamines. After the last reaction cycle, the overall conversion is about 90% for all tested substrates, with an aldehyde production ranging between 100 and 270 mg depending on the substrate used. As a proof concept, one of the aldehydes thus produced was successfully used for the biomimetic synthesis of a non-natural benzylisoquinoline alkaloid.


Subject(s)
Lathyrus , Aldehydes , Amines , Biocatalysis , Enzymes, Immobilized/metabolism , Humans , Lathyrus/metabolism , Magnetic Phenomena , Monoamine Oxidase/metabolism , Oxidoreductases/metabolism
8.
Sci Rep ; 12(1): 5257, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35347170

ABSTRACT

Numerous studies have shown a strong correlation between the number of neurofibrillary tangles of the tau protein and Alzheimer's disease progression, making the quantitative detection of tau very promising from a clinical point of view. However, the lack of highly reliable fluorescent probes for selective imaging of tau neurofibrillary tangles is a major challenge due to sharing similar ß-sheet motifs with homologous Amyloid-ß fibrils. In the current work, we describe the rational design and the in silico evaluation of a small-size focused library of fluorescent probes, consisting of a BODIPY core (electron acceptor) featuring highly conjugated systems (electron donor) with a length in the range 13-19 Å at C3. Among the most promising probes in terms of binding mode, theoretical affinity and polarity, BT1 has been synthesized and tested in vitro onto human induced pluripotent stem cells derived neuronal cell cultures. The probe showed excellent photophysical properties and high selectivity allowing in vitro imaging of hyperphosphorylated tau protein filaments with minimal background noise. Our findings offer new insight into the structure-activity relationship of this class of tau selective fluorophores, paving the way for boosting tau tangle detection in patients possibly through retinal spectral scans.


Subject(s)
Induced Pluripotent Stem Cells , Boron Compounds , Humans , Induced Pluripotent Stem Cells/metabolism , Neurons/metabolism , tau Proteins/metabolism
9.
Org Biomol Chem ; 20(15): 3160-3173, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35343991

ABSTRACT

The functionalized 3,4-dihydroquinolin-2-one nucleus has been assembled in good to high yields through the sequential reaction of readily available N-Ts-o-aminobenzyl alcohols with 5-substituted Meldrum's acid derivatives under mild basic conditions. Highly diastereoselective synthesis of 3-substituted-4-phenyl-1-tosyl-3,4-dihydroquinolin-2(1H)-ones was accomplished from N-(2-(hydroxy(phenyl)methyl)phenyl)-4-methylbenzenesulfonamide under the same reaction conditions. Regarding the reaction mechanism, we hypothesized that the formation of dihydroquinolones proceeds through the in situ generation of aza-o-QMs followed by conjugate addition of enolate/cyclization/elimination of acetone and CO2.


Subject(s)
Dioxanes , Cyclization
10.
Foods ; 11(2)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35053885

ABSTRACT

The aim of this work was to develop innovative and sustainable extraction, concentration, and purification technologies aimed to recover target substances from corn oil, obtained as side stream product of biomass refineries. Residues of bioactive compounds such as carotenoids, phytosterols, tocopherols, and polyphenols could be extracted from this matrix and applied as ingredients for food and feeds, nutraceuticals, pharmaceuticals, and cosmetic products. These molecules are well known for their antioxidant and antiradical capacity, besides other specific biological activities, generically involved in the prevention of chronic and degenerative diseases. The project involved the development of methods for the selective extraction of these minor components, using as suitable extraction technique solid phase extraction. All the extracted and purified fractions were evaluated by NMR spectroscopic analyses and UV-Vis spectrophotometric techniques and characterized by quali-quantitative HPLC analyses. TPC (total phenolic content) and TFC (total flavonoid content) were also determined. DPPH and ABTS radical were used to evaluate radical quenching abilities. Acetylcholinesterase (AChE), amylase, glucosidase, and tyrosinase were selected as enzymes in the enzyme inhibitory assays. The obtained results showed the presence of a complex group of interesting molecules with strong potential in market applications according to circular economy principles.

11.
Molecules ; 28(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36615493

ABSTRACT

The gold-catalyzed cyclization of 2,2-bis(3-arylprop-2-yn1-yl)malonic acid has been proposed as an efficient approach to substituted 3,8-dibenzyl-2,7-dioxaspiro[4.4]nonane-1,6-diones. The reaction proceeds smoothly in mild reaction conditions to give the desired products in quantitative yields in the presence of variously substituted starting materials. In addition, the synthesis of γ-arylidene spirobislactone bearing different substituents on the two aromatic rings has been achieved. This kind of compound could be of great interest in pharmaceutical science given the widespread presence of this scaffold in bioactive natural and synthetic products.


Subject(s)
Gold , Molecular Structure , Catalysis , Cyclization
12.
Molecules ; 26(14)2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34299626

ABSTRACT

Bioactive peptides are increasingly used in clinical practice. Reversed-phase chromatography using formic or trifluoroacetic acid in the mobile phase is the most widely used technique for their analytical control. However, sometimes it does not prove sufficient to solve challenging chromatographic problems. In the search for alternative elution modes, the dynamic electrostatic repulsion reversed-phase was evaluated to separate eight probe peptides characterised by different molecular weights and isoelectric points. This technique, which involves TBAHSO4 in the mobile phase, provided the lowest asymmetry and peak width at half height values and the highest in peak capacity (about 200 for a gradient of 30 min) and resolution concerning the classic reversed-phase. All analyses were performed using cutting-edge columns developed for peptide separation, and the comparison of the chromatograms obtained shows how the dynamic electrostatic repulsion reversed-phase is an attractive alternative to the classic reversed-phase.


Subject(s)
Chromatography, Reverse-Phase , Peptides/isolation & purification , Peptides/chemistry , Static Electricity
13.
Molecules ; 26(11)2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34199620

ABSTRACT

An alternative Au(I)-catalyzed synthetic route to functionalized 1,2-dihydroquinolines is reported. This novel approach is based on the use of N-ethoxycarbonyl protected-N-propargylanilines as building blocks that rapidly undergo the IMHA reaction affording the 6-endo cyclization product in good to high yields. In the presence of N-ethoxycarbonyl-N-propargyl-meta-substituted anilines, the regiodivergent cyclization at the ortho-/para-position is achieved by the means of catalyst fine tuning.

14.
J Nanobiotechnology ; 19(1): 172, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34107976

ABSTRACT

BACKGROUND: In recent years, the use of ferritins as nano-vehicles for drug delivery is taking center stage. Compared to other similar nanocarriers, Archaeoglobus fulgidus ferritin is particularly interesting due to its unique ability to assemble-disassemble under very mild conditions. Recently this ferritin was engineered to get a chimeric protein targeted to human CD71 receptor, typically overexpressed in cancer cells. RESULTS: Archaeoglobus fulgidus chimeric ferritin was used to generate a self-assembling hybrid nanoparticle hosting an aminic dendrimer together with a small nucleic acid. The positively charged dendrimer can indeed establish electrostatic interactions with the chimeric ferritin internal surface, allowing the formation of a protein-dendrimer binary system. The 4 large triangular openings on the ferritin shell represent a gate for negatively charged small RNAs, which access the internal cavity attracted by the dense positive charge of the dendrimer. This ternary protein-dendrimer-RNA system is efficiently uptaken by acute myeloid leukemia cells, typically difficult to transfect. As a proof of concept, we used a microRNA whose cellular delivery and induced phenotypic effects can be easily detected. In this article we have demonstrated that this hybrid nanoparticle successfully delivers a pre-miRNA to leukemia cells. Once delivered, the nucleic acid is released into the cytosol and processed to mature miRNA, thus eliciting phenotypic effects and morphological changes similar to the initial stages of granulocyte differentiation. CONCLUSION: The results here presented pave the way for the design of a new family of protein-based transfecting agents that can specifically target a wide range of diseased cells.


Subject(s)
Dendrimers/chemistry , Drug Delivery Systems/methods , Ferritins/chemistry , Leukemia, Myeloid/drug therapy , Nanoparticles/chemistry , Nucleic Acids/chemistry , Antigens, CD , Archaeoglobus fulgidus/genetics , Archaeoglobus fulgidus/metabolism , Cell Line, Tumor , Ferritins/genetics , Humans , MicroRNAs/chemistry , MicroRNAs/pharmacology , Receptors, Transferrin
15.
J Chromatogr A ; 1647: 462148, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-33957345

ABSTRACT

The toolbox of medicinal chemists includes the 1,4-benzodiazepine scaffold as a "privileged scaffold" in drug discovery. Several biologically active small molecules containing a 1,4-benzodiazepine scaffold have been approved by the FDA for the treatment of various diseases, with most of them being used for their psychotropic effects. The therapeutic potential of 1,4-benzodiazepines has stimulated the interest of synthetic chemists in developing new synthetic strategies to a range of substituted analogues for biological evaluation. A structural variation of the classical benzodiazepine skeleton is observed e.g. in alprazolam, midazolam, and related benzodiazepines, which contain a 1,2,4-triazole or an imidazole ring fused to the benzodiazepine core. Irrespective of the presence of the fused heterocyclic ring, the seven-membered diazepine ring is far from planar, and its shape resembles a twist chair. Then, the unsymmetrical substitution pattern around the seven membered cycle renders these molecules chiral, as they lack any reflection-type symmetry element. However, chirality of this molecules is labile at room temperature, becausea simple ring flipping process converts one enantiomer into the other, and 1,4-benzodiazepines exist as a mixture of rapidly interconverting conformational enantiomers in solution at or near room temperature. Physical separation of the interconverting enantiomers of diazepam and of other related 1,4-benzodiazepin-2-ones can be accomplished by low temperature HPLC on chiral stationary phases (CSPs). If the HPLC column is cooled down to temperatures where the interconversion rate is sufficiently low, compared to the chromatographic separation rate, distinct separated peaks can be observed, provided the CSP is sufficiently enantioselctive. The apparent rate constants for the on-column enantiomerization and the corresponding free energy activation barriers were obtained by simulation of exchange-deformed HPLC profiles using a computer program based on the stochastic model. Here we report on the dynamic HPLC investigations carried out on a set of fused imidazo and triazolo-benzodiazepines (alprazolam, midazolam, triazolam and estazolam) The experimental dynamic chromatograms and the corresponding interconversion barriers reported in this paper show that the third fused heterocyclic ring increase the energy barrier by 2 kcal/mol.


Subject(s)
Benzodiazepines/chemistry , Benzodiazepines/isolation & purification , Chromatography, High Pressure Liquid/methods , Benzodiazepines/analysis , Imidazoles/analysis , Imidazoles/chemistry , Imidazoles/isolation & purification , Stereoisomerism , Triazoles/analysis , Triazoles/chemistry , Triazoles/isolation & purification
16.
Org Biomol Chem ; 19(23): 5177-5190, 2021 06 16.
Article in English | MEDLINE | ID: mdl-34042150

ABSTRACT

A divergent domino condensation/biannulation reaction of ß-(2-aminophenyl) α,ß-ynones with 1,3-dicarbonyls to construct a polycyclic 4H-pyrano[3,4-c]quinoline core has been developed. The p-TsOH·H2O catalyzed reaction of ß-(2-aminophenyl) α,ß-ynones with ß-ketoesters in ethanol proceeds with good to excellent yields to provide a simple and effective method for the synthesis of functionalized 4H-pyrano[3,4-c]quinolinones. Further elaboration of these latter derivatives with an excess of 20% NH4OH in EtOH at 50 °C helps achieve the synthesis of the perlodinine analogues benzo[c][2,7]naphthyridin-4(3H)-one derivatives in high yields. Moreover, the p-TsOH·H2O mediated reaction of ß-(2-aminophenyl) α,ß-ynones with ß-di-ketones leads to the formation of a variety of structurally diverse 4H-pyrano[3,4-c]quinoline polycyclic ketals by the incorporation of an alcohol solvent molecule in a cascade fashion.

17.
Org Biomol Chem ; 19(2): 421-438, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33315039

ABSTRACT

This study describes diversity-oriented synthesis of 2,2,3-substituted-2,3-dihydroquinolin-4(1H)-ones vs. functionalised quinoline or N-alkenylindole derivatives through Brønsted acid mediated or Lewis acid catalyzed sequential reactions of 2-alkynylanilines with ketones. In particular, a series of challenging quinolin-4-one derivatives are prepared with good functional group tolerance in an atom-economical fashion by using p-toluenesulfonic acid monohydrate as a promoter of the reaction of ketones with 2-alkynylanilines in EtOH at reflux, while the same starting materials give the corresponding 4-substituted quinolines in toluene at 110 °C both in the presence of p-toluenesulfonic acid monohydrate as the promoter and FeCl3 as the catalyst. The divergent formation of N-alkenylindole derivatives occurs by switching to the use of ZnBr2 as the catalyst under the same reaction conditions. Conversely, only 4-methylsubstituted quinoline derivatives were isolated by reacting 2-ethynylanilines and/or 2-trimethylsylilanilines with ketones in all examined cases.

18.
Int J Mol Sci ; 22(1)2020 Dec 25.
Article in English | MEDLINE | ID: mdl-33375681

ABSTRACT

The presence of stereogenic elements is a common feature in pharmaceutical compounds, and affording optically pure stereoisomers is a frequent issue in drug design. In this context, the study of the chiral molecular recognition mechanism fundamentally supports the understanding and optimization of chromatographic separations with chiral stationary phases. We investigated, with molecular docking, the interactions between the chiral HPLC selector Whelk-O1 and the stereoisomers of two bioactive compounds, the antiviral Nevirapine and the anticonvulsant Oxcarbazepine, both characterized by two stereolabile conformational enantiomers. The presence of fast-exchange enantiomers and the rate of the interconversion process were studied using low temperature enantioselective HPLC and VT-NMR with Whelk-O1 applied as chiral solvating agent. The values of the energetic barriers of interconversion indicate, for the single enantiomers of both compounds, half-lives sufficiently long enough to allow their separation only at critically sub-ambient temperatures. The chiral selector Whelk-O1 performed as a strongly selective discriminating agent both when applied as a chiral stationary phase (CSP) in HPLC and as CSA in NMR spectroscopy.


Subject(s)
Chromatography, High Pressure Liquid , Models, Molecular , Molecular Conformation , Nevirapine/chemistry , Oxcarbazepine/chemistry , Chromatography, High Pressure Liquid/methods , Magnetic Resonance Spectroscopy , Molecular Structure , Stereoisomerism , Structure-Activity Relationship
19.
Molecules ; 25(16)2020 Aug 09.
Article in English | MEDLINE | ID: mdl-32784887

ABSTRACT

Antibiotic resistance is now considered a worldwide problem that puts public health at risk. The onset of bacterial strains resistant to conventional antibiotics and the scarcity of new drugs have prompted scientific research to re-evaluate natural products as molecules with high biological and chemical potential. A class of natural compounds of significant importance is represented by alkaloids derived from higher plants. In this review, we have collected data obtained from various research groups on the antimicrobial activities of these alkaloids against conventional antibiotic-resistant strains. In addition, the structure-function relationship was described and commented on, highlighting the high potential of alkaloids as antimicrobials.


Subject(s)
Alkaloids/pharmacology , Anti-Bacterial Agents/pharmacology , Biological Products/pharmacology , Drug Resistance, Microbial/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Plant Extracts/pharmacology , Staphylococcal Infections/drug therapy , Humans , Staphylococcal Infections/microbiology
20.
Molecules ; 25(9)2020 Apr 26.
Article in English | MEDLINE | ID: mdl-32357533

ABSTRACT

Fully ripe fruits and mature leaves of Elaeagnus angustifolia were harvested and analyzed by means of analytical and biological tests to better comprehend the chemical composition and therapeutic/nutraceutical potential of this plant. Fruits and leaves were dried and the obtained powders were analyzed to study their color character and (via headspace gas chromatography) describe the chemical profile. Subsequently, they were submitted to a chloroform-methanol extraction, to a hydroalcoholic extraction procedure assisted or not by microwaves, and to an extraction with supercritical CO2, assisted or not by ethanol as the co-solvent, to detect the polyphenolic and the volatile content. The resulting extracts were evaluated in terms of chlorophyll and carotenoid content, polyphenolic content, volatile fraction, total phenolic content, total flavonoid content, antioxidant activity, radical scavenging activity, and enzymatic inhibition activity. The results confirmed the correlation between the chemical composition and the high antioxidant potential of leaf extracts compared to the fruit extracts in terms of the phenolic and pigment content. A promising effect against tyrosinase emerged for all the extracts, suggesting a therapeutic/nutraceutical use for this plant. Conversely, the volatile content from both natural matrices was similar.


Subject(s)
Antioxidants/analysis , Carotenoids/analysis , Elaeagnaceae/chemistry , Flavonoids/analysis , Fruit/chemistry , Plant Extracts/analysis , Plant Leaves/chemistry , Polyphenols/analysis , Antioxidants/chemistry , Carotenoids/chemistry , Chloroform/chemistry , Chlorophyll/analysis , Chromatography, Gas , Chromatography, High Pressure Liquid , Color , Flavonoids/chemistry , Magnetic Resonance Spectroscopy , Mass Spectrometry , Methanol/chemistry , Microwaves , Monophenol Monooxygenase/antagonists & inhibitors , Phenols/analysis , Phenols/chemistry , Plant Extracts/chemistry , Polyphenols/chemistry , Powders , Solvents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...