Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Brain Behav Immun ; 116: 126-139, 2024 02.
Article in English | MEDLINE | ID: mdl-38016491

ABSTRACT

INTRODUCTION: A wide range of positive, negative, and cognitive symptoms compose the clinical presentation of schizophrenia. Schizophrenia is a multifactorial disorder in which genetic and environmental risk factors interact for a full emergence of the disorder. Infectious challenges during pregnancy are a well-known environmental risk factor for schizophrenia. Also, genetic variants affecting the function of fractalkine signaling between neurons and microglia were linked to schizophrenia. Translational animal models recapitulating these complex gene-environment associations have a great potential to untangle schizophrenia neurobiology and propose new therapeutic strategies. METHODS: Given that genetic variants affecting the function of fractalkine signaling between neurons and microglia were linked to schizophrenia, we compared the outcomes of a well-characterized model of maternal immune activation induced using the viral mimetic polyinosinic:polycytidylic acid (Poly I:C) in wild-type versus fractalkine receptor knockout mice. Possible behavioral and immune alterations were assessed in male and female offspring during adulthood. Considering the role of the hippocampus in schizophrenia, microglial analyses and bulk RNA sequencing were performed within this region to assess the neuroimmune dynamics at play. Males and females were examined separately. RESULTS: Offspring exposed to the dual challenge paradigm exhibited symptoms relevant to schizophrenia and unpredictably to mood disorders. Males displayed social and cognitive deficits related to schizophrenia, while females mainly presented anxiety-like behaviors related to mood disorders. Hippocampal microglia in females exposed to the dual challenge were hypertrophic, indicative of an increased surveillance, whereas those in males showed on the other end of the spectrum blunted morphologies with a reduced phagocytosis. Hippocampal bulk-RNA sequencing further revealed a downregulation in females of genes related to GABAergic transmission, which represents one of the main proposed causes of mood disorders. CONCLUSIONS: Building on previous results, we identified in the current study distinctive behavioral phenotypes in female mice exposed to a dual genetic and environmental challenge, thus proposing a new model of neurodevelopmentally-associated mood and affective symptoms. This paves the way to future sex-specific investigations into the susceptibility to developmental challenges using animal models based on genetic and immune vulnerability as presented here.


Subject(s)
Microglia , Prenatal Exposure Delayed Effects , Pregnancy , Humans , Mice , Female , Male , Animals , Chemokine CX3CL1 , Poly I-C/pharmacology , Behavior, Animal/physiology , Gene Expression Profiling , Hippocampus , Disease Models, Animal
2.
J Neuroinflammation ; 20(1): 273, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37990235

ABSTRACT

Traumatic spinal cord injury can cause immediate physical damage to the spinal cord and result in severe neurological deficits. The primary, mechanical tissue damage triggers a variety of secondary damage mechanisms at the injury site which significantly contribute to a larger lesion size and increased functional damage. Inflammatory mechanisms which directly involve both microglia (MG) and monocyte-derived macrophages (MDM) play important roles in the post-injury processes, including inflammation and debris clearing. In the current study, we investigated changes in the structure and function of MG/MDM in the injured spinal cord of adult female mice, 7 days after a thoracic contusion SCI. With the use of chip mapping scanning electron microscopy, which allows to image large samples at the nanoscale, we performed an ultrastructural comparison of MG/MDM located near the lesion vs adjacent regions to provide novel insights into the mechanisms at play post-injury. We found that MG/MDM located near the lesion had more mitochondria overall, including mitochondria with and without morphological alterations, and had a higher proportion of altered mitochondria. MG/MDM near the lesion also showed an increased number of phagosomes, including phagosomes containing myelin and partiallydigested materials. MG/MDM near the injury interacted differently with the spinal cord parenchyma, as shown by their reduced number of direct contacts with synaptic elements, axon terminals and dendritic spines. In this study, we characterized the ultrastructural changes of MG/MDM in response to spinal cord tissue damage in mice, uncovering changes in phagocytic activity, mitochondrial ultrastructure, and inter-cellular interactions within the spinal cord parenchyma.


Subject(s)
Microglia , Spinal Cord Injuries , Mice , Female , Animals , Microglia/pathology , Macrophages/pathology , Spinal Cord Injuries/pathology , Phagocytes/pathology , Spinal Cord/pathology
3.
bioRxiv ; 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37693370

ABSTRACT

Psychological stress confers an increased risk for several diseases including psychiatric conditions. The susceptibility to psychological stress is modulated by various factors, many of them being modifiable lifestyle choices. The ketogenic diet (KD) has emerged as a dietary regime that offers positive outcomes on mood and health status. Psychological stress and elevated inflammation are common features of neuropsychiatric disorders such as certain types of major depressive disorder. KD has been attributed anti-inflammatory properties that could underlie its beneficial consequences on the brain and behavior. Microglia are the main drivers of inflammation in the central nervous system. They are known to respond to both dietary changes and psychological stress, notably by modifying their production of cytokines and relationships among the brain parenchyma. To assess the interactions between KD and the stress response, including effects on microglia, we examined adult male mice on control diet (CD) versus KD that underwent 10 days of repeated social defeat (RSD) or remained non-stressed (controls; CTRLs). Through a social interaction test, stressed mice were classified as susceptible (SUS) or resistant (RES) to RSD. The mouse population fed a KD tended to have a higher proportion of individuals classified as RES following RSD. Microglial morphology and ultrastructure were then analyzed in the ventral hippocampus CA1, a brain region known to present structural alterations as a response to psychological stress. Distinct changes in microglial soma and arborization linked to the KD, SUS and RES phenotypes were revealed. Ultrastructural analysis by electron microscopy showed a clear reduction of cellular stress markers in microglia from KD fed animals. Furthermore, ultrastructural analysis showed that microglial contacts with synaptic elements were reduced in the SUS compared to the RES and CTRL groups. Hippocampal lipidomic analyses lastly identified a distinct lipid profile in SUS animals compared to CTRLs. These key differences, combined with the distinct microglial responses to diet and stress, indicate that unique metabolic changes may underlie the stress susceptibility phenotypes. Altogether, our results reveal novel mechanisms by which a KD might improve the resistance to psychological stress.

4.
Brain Behav Immun ; 114: 383-406, 2023 11.
Article in English | MEDLINE | ID: mdl-37689276

ABSTRACT

Psychological stress confers an increased risk for several diseases including psychiatric conditions. The susceptibility to psychological stress is modulated by various factors, many of them being modifiable lifestyle choices. The ketogenic diet (KD) has emerged as a dietary regime that offers positive outcomes on mood and health status. Psychological stress and elevated inflammation are common features of neuropsychiatric disorders such as certain types of major depressive disorder. KD has been attributed anti-inflammatory properties that could underlie its beneficial consequences on the brain and behavior. Microglia are the main drivers of inflammation in the central nervous system. They are known to respond to both dietary changes and psychological stress, notably by modifying their production of cytokines and relationships among the brain parenchyma. To assess the interactions between KD and the stress response, including effects on microglia, we examined adult male mice on control diet (CD) versus KD that underwent 10 days of repeated social defeat (RSD) or remained non-stressed (controls; CTRLs). Through a social interaction test, stressed mice were classified as susceptible (SUS) or resistant (RES) to RSD. The mouse population fed a KD tended to have a higher proportion of individuals classified as RES following RSD. Microglial morphology and ultrastructure were then analyzed in the ventral hippocampus CA1, a brain region known to present structural alterations as a response to psychological stress. Distinct changes in microglial soma and arborization linked to the KD, SUS and RES phenotypes were revealed. Ultrastructural analysis by electron microscopy showed a clear reduction of cellular stress markers in microglia from KD fed animals. Furthermore, ultrastructural analysis showed that microglial contacts with synaptic elements were reduced in the SUS compared to the RES and CTRL groups. Hippocampal lipidomic analyses lastly identified a distinct lipid profile in SUS animals compared to CTRLs. These key differences, combined with the distinct microglial responses to diet and stress, indicate that unique metabolic changes may underlie the stress susceptibility phenotypes. Altogether, our results reveal novel mechanisms by which a KD might improve the resistance to psychological stress.


Subject(s)
Depressive Disorder, Major , Diet, Ketogenic , Mice , Male , Animals , Microglia/metabolism , Social Behavior , Social Defeat , Depressive Disorder, Major/metabolism , Lipidomics , Hippocampus , Inflammation/metabolism , Stress, Psychological/metabolism , Mice, Inbred C57BL
5.
Nat Neurosci ; 26(6): 1008-1020, 2023 06.
Article in English | MEDLINE | ID: mdl-37169859

ABSTRACT

Molecular diversity of microglia, the resident immune cells in the CNS, is reported. Whether microglial subsets characterized by the expression of specific proteins constitute subtypes with distinct functions has not been fully elucidated. Here we describe a microglial subtype expressing the enzyme arginase-1 (ARG1; that is, ARG1+ microglia) that is found predominantly in the basal forebrain and ventral striatum during early postnatal mouse development. ARG1+ microglia are enriched in phagocytic inclusions and exhibit a distinct molecular signature, including upregulation of genes such as Apoe, Clec7a, Igf1, Lgals3 and Mgl2, compared to ARG1- microglia. Microglial-specific knockdown of Arg1 results in deficient cholinergic innervation and impaired dendritic spine maturation in the hippocampus where cholinergic neurons project, which in turn results in impaired long-term potentiation and cognitive behavioral deficiencies in female mice. Our results expand on microglia diversity and provide insights into microglia subtype-specific functions.


Subject(s)
Arginase , Microglia , Animals , Female , Mice , Arginase/genetics , Arginase/metabolism , Hippocampus/metabolism , Microglia/metabolism
6.
J Neuroinflammation ; 20(1): 73, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36918925

ABSTRACT

The past decade has witnessed increasing evidence for a crucial role played by glial cells, notably astrocytes, in Alzheimer's disease (AD). To provide novel insights into the roles of astrocytes in the pathophysiology of AD, we performed a quantitative ultrastructural characterization of their intracellular contents and parenchymal interactions in an aged mouse model of AD pathology, as aging is considered the main risk factor for developing AD. We compared 20-month-old APP-PS1 and age-matched C57BL/6J male mice, among the ventral hippocampus CA1 strata lacunosum-moleculare and radiatum, two hippocampal layers severely affected by AD pathology. Astrocytes in both layers interacted more with synaptic elements and displayed more ultrastructural markers of increased phagolysosomal activity in APP-PS1 versus C57BL6/J mice. In addition, we investigated the ultrastructural heterogeneity of astrocytes, describing in the two examined layers a dark astrocytic state that we characterized in terms of distribution, interactions with AD hallmarks, and intracellular contents. This electron-dense astrocytic state, termed dark astrocytes, was observed throughout the hippocampal parenchyma, closely associated with the vasculature, and possessed several ultrastructural markers of cellular stress. A case study exploring the hippocampal head of an aged human post-mortem brain sample also revealed the presence of a similar electron-dense, dark astrocytic state. Overall, our study provides the first ultrastructural quantitative analysis of astrocytes among the hippocampus in aged AD pathology, as well as a thorough characterization of a dark astrocytic state conserved from mouse to human.


Subject(s)
Alzheimer Disease , Astrocytes , Mice , Humans , Male , Animals , Aged , Infant , Astrocytes/metabolism , Mice, Inbred C57BL , Alzheimer Disease/pathology , Brain/metabolism , Hippocampus/metabolism , Mice, Transgenic , Disease Models, Animal , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism
7.
Behav Brain Res ; 441: 114295, 2023 03 12.
Article in English | MEDLINE | ID: mdl-36641083

ABSTRACT

Major depressive disorder (MDD) is a chronic, recurring, and potentially life-threatening illness, which affects over 300 million people worldwide. MDD affects not only the emotional and social domains but also cognition. However, the currently available treatments targeting cognitive deficits in MDD are limited. Minocycline, an antibiotic with anti-inflammatory properties recently identified as a potential antidepressant, has been shown to attenuate learning and memory deficits in animal models of cognitive impairment. Here, we explored whether minocycline recovers the deficits in cognition in a mouse model of depression. C57BL6/J adult male mice were exposed to two weeks of chronic unpredictable mild stress to induce a depressive-like phenotype. Immediately afterward, mice received either vehicle or minocycline for three weeks in standard housing conditions. We measured anhedonia as a depressive-like response, and place learning to assess cognitive abilities. We also recorded long-term potentiation (LTP) as an index of hippocampal functional plasticity and ran immunohistochemical assays to assess microglial proportion and morphology. After one week of treatment, cognitive performance in the place learning test was significantly improved by minocycline, as treated mice displayed a higher number of correct responses when learning novel spatial configurations. Accordingly, minocycline-treated mice displayed higher LTP compared to controls. However, after three weeks of treatment, no difference between treated and control animals was found for behavior, neural plasticity, and microglial properties, suggesting that minocycline has a fast but short effect on cognition, without lasting effects on microglia. These findings together support the usefulness of minocycline as a potential treatment for cognitive impairment associated with MDD.


Subject(s)
Cognition Disorders , Depressive Disorder, Major , Mice , Animals , Male , Minocycline/pharmacology , Depressive Disorder, Major/drug therapy , Anti-Bacterial Agents/pharmacology , Cognition , Hippocampus
8.
J Neuroinflammation ; 19(1): 235, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36167544

ABSTRACT

A diverse heterogeneity of microglial cells was previously described in Alzheimer's disease (AD) pathology, including dark microglia, a state characterized by ultrastructural markers of cellular stress. To provide novel insights into the roles of dark microglia during aging in the context of AD pathology, we performed a quantitative density and ultrastructural analysis of these cells using high-throughput scanning electron microscopy in the ventral hippocampus CA1 stratum lacunosum-moleculare of 20-month-old APP-PS1 vs C57BL/6J male mice. The density of dark microglia was significantly higher in APP-PS1 vs C57BL/6J mice, with these cells accounting for nearly half of all microglia observed near amyloid-beta (Aß) plaques. This dark microglial state interacted more with dystrophic neurites compared to other APP-PS1 microglia and possessed glycogen granules, associated with a metabolic shift toward glycolysis, which provides the first ultrastructural evidence of their presence in microglia. Dark microglia were further observed in aging human post-mortem brain samples showing similar ultrastructural features as in mouse. Overall, our results provide a quantitative ultrastructural characterization of a microglial state associated with cellular stress (i.e., dark microglia) that is primarily restricted near Aß plaques and dystrophic neurites. The presence of this microglial state in the aging human post-mortem brain is further revealed.


Subject(s)
Alzheimer Disease , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Glycogen/metabolism , Humans , Infant , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microglia/metabolism , Plaque, Amyloid/pathology
9.
Micron ; 161: 103334, 2022 10.
Article in English | MEDLINE | ID: mdl-35970079

ABSTRACT

Microglia, the immune resident cells of the central nervous system (CNS), are now recognized as performing crucial roles for maintaining homeostasis and determining the outcomes of various pathological challenges across life. While brightfield microscopy is a powerful and established tool to study microglia-mediated mechanisms underlying neurological diseases, microglial density and distribution are some of the most frequently investigated parameters. Their quantitative assessment provides relevant clues regarding dynamic densitometric changes in the microglial population across various CNS regions. Investigators often rely on a manual identification and analysis of these cells within key regions of interest, which can be time-consuming and introduce an experimenter bias. Automation of this process, which has been gaining popularity in recent years, represents a potential solution to minimize both experimenter's bias and time investment, thus increasing the efficacy of the experiment and uniformity of the collected data. We aimed to compare manual versus automatic analysis methods to determine whether an automatic analysis is efficient and accurate enough to replace a manual analysis in both homeostatic and pathological contexts (i.e., adult healthy and lipopolysaccharide-challenged adolescent male mice, respectively). To do so, we used a script that runs on the ImageJ software to perform microglial density analysis by automatic detection of microglial cells from brightfield microscopy images. The main core of the macro script consists in an automatic cell selection step using a threshold followed by a spatial analysis for each selected cell. The resulting data were then compared with the values obtained using a well-established manual method. Overall, the evaluation of the established automatic densitometry method with manual density and distribution analysis revealed similar results for the density and nearest neighbor distance in healthy adult mice, as well as density and distribution in lipopolysaccharide-challenged adolescent mice. Applying machine learning to the automatic process could further improve the accuracy and robustness of the method.


Subject(s)
Lipopolysaccharides , Microglia , Animals , Mice , Male , Microglia/pathology , Hippocampus , Software , Automation
10.
Front Cell Neurosci ; 16: 839396, 2022.
Article in English | MEDLINE | ID: mdl-35663424

ABSTRACT

Suicide is a complex public health challenge associated worldwide with one death every 40 s. Research advances in the neuropathology of suicidal behaviors (SB) have defined discrete brain changes which may hold the key to suicide prevention. Physiological differences in microglia, the resident immune cells of the brain, are present in post-mortem tissue samples of individuals who died by suicide. Furthermore, microglia are mechanistically implicated in the outcomes of important risk factors for SB, including early-life adversity, stressful life events, and psychiatric disorders. SB risk factors result in inflammatory and oxidative stress activities which could converge to microglial synaptic remodeling affecting susceptibility or resistance to SB. To push further this perspective, in this Review we summarize current areas of opportunity that could untangle the functional participation of microglia in the context of suicide. Our discussion centers around microglial state diversity in respect to morphology, gene and protein expression, as well as function, depending on various factors, namely brain region, age, and sex.

11.
J Neuroinflammation ; 19(1): 81, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35387656

ABSTRACT

BACKGROUND: Microglia participate in the immune response upon central nervous system (CNS) infections. However, the role of these cells during herpes simplex encephalitis (HSE) has not been fully characterized. We sought to identify different microglia/microglia-like cells and describe the potential mechanisms and signaling pathways involved during HSE. METHODS: The transcriptional response of CD11b+ immune cells, including microglia/microglia-like cells, was investigated using single-cell RNA sequencing (scRNA-seq) on cells isolated from the ventral posterolateral nucleus (VPL)-enriched thalamic regions of C57BL/6 N mice intranasally infected with herpes simplex virus-1 (HSV-1) (6 × 105 PFUs/20 µl). We further performed scanning electronic microscopy (SEM) analysis in VPL regions on day 6 post-infection (p.i.) to provide insight into microglial functions. RESULTS: We describe a novel microglia-like transcriptional response associated with a rare cell population (7% of all analyzed cells), named "in transition" microglia/microglia-like cells in HSE. This new microglia-like transcriptional signature, found in the highly infected thalamic regions, was enriched in specific genes (Retnlg, Cxcr2, Il1f9) usually associated with neutrophils. Pathway analysis of this cell-type transcriptome showed increased NLRP3-inflammasome-mediated interleukin IL-1ß production, promoting a pro-inflammatory response. These cells' increased expression of viral transcripts suggests that the distinct "in transition" transcriptome corresponds to the intrinsic antiviral immune signaling of HSV-1-infected microglia/microglia-like cells in the thalamus. In accordance with this phenotype, we observed several TMEM119+/IBA-I+ microglia/microglia-like cells immunostained for HSV-1 in highly infected regions. CONCLUSIONS: A new microglia/microglia-like state may potentially shed light on how microglia could react to HSV-1 infection. Our observations suggest that infected microglia/microglia-like cells contribute to an exacerbated CNS inflammation. Further characterization of this transitory state of the microglia/microglia-like cell transcriptome may allow the development of novel immunomodulatory approaches to improve HSE outcomes by regulating the microglial immune response.


Subject(s)
Encephalitis, Herpes Simplex , Herpesvirus 1, Human , Animals , Mice , Mice, Inbred C57BL , Microglia/metabolism , Transcriptome , Ventral Thalamic Nuclei
12.
Proc Natl Acad Sci U S A ; 119(12): e2114545119, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35286203

ABSTRACT

Exposure to maternal immune activation (MIA) in utero is a risk factor for neurodevelopmental and psychiatric disorders. MIA-induced deficits in adolescent and adult offspring have been well characterized; however, less is known about the effects of MIA exposure on embryo development. To address this gap, we performed high-resolution ex vivo MRI to investigate the effects of early (gestational day [GD]9) and late (GD17) MIA exposure on embryo (GD18) brain structure. We identify striking neuroanatomical changes in the embryo brain, particularly in the late-exposed offspring. We further examined the putative neuroanatomical underpinnings of MIA timing in the hippocampus using electron microscopy and identified differential effects due to MIA timing. An increase in apoptotic cell density was observed in the GD9-exposed offspring, while an increase in the density of neurons and glia with ultrastructural features reflective of increased neuroinflammation and oxidative stress was observed in GD17-exposed offspring, particularly in females. Overall, our findings integrate imaging techniques across different scales to identify differential impact of MIA timing on the earliest stages of neurodevelopment.


Subject(s)
Autism Spectrum Disorder , Immune System , Prenatal Exposure Delayed Effects , Schizophrenia , Adolescent , Animals , Brain , Disease Models, Animal , Female , Humans , Immune System/physiology , Inflammation , Magnetic Resonance Imaging , Mice , Pregnancy
13.
Clin Psychol Psychother ; 29(4): 1172-1185, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35102640

ABSTRACT

Bipolar disorder is a highly disruptive and debilitating problem. Mindfulness-based and mindfulness-informed interventions have exponentially emerged as third-generation therapies, applied to a wide spectrum of disorders, including bipolar disorder. However, the reviews and meta-analyses published to date are limited in their conclusions, as they are based on single-group pretest-posttest cohort designs and mostly focused on mindfulness-based interventions. The present review and meta-analysis try to address these limitations, including studies on informed mindfulness, controlled and single-group designs. It used a specific meta-analytical procedure that allows an imputation procedure in those designs lacking a comparison group, by means of separate omnibus tests for the experimental and control group. A total of 13 studies (N = 331) were selected. The results showed an absence of effects on depression (g = 0.21) and mania (g = -0.13), but significant moderate effect on anxiety (g = 0.53). In conclusion, both mindfulness interventions showed robust evidence on anxiety symptoms in pretest-posttest periods compared to control groups. Few studies and lack of evidence of follow-up periods were the main limitations found.


Subject(s)
Bipolar Disorder , Mindfulness , Anxiety , Anxiety Disorders/therapy , Bipolar Disorder/therapy , Humans , Mindfulness/methods , Research Design
14.
Commun Biol ; 5(1): 26, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35017640

ABSTRACT

Various environmental exposures during pregnancy, like maternal diet, can compromise, at critical periods of development, the neurovascular maturation of the offspring. Foetal exposure to maternal high-fat diet (mHFD), common to Western societies, has been shown to disturb neurovascular development in neonates and long-term permeability of the neurovasculature. Nevertheless, the effects of mHFD on the offspring's cerebrovascular health remains largely elusive. Here, we sought to address this knowledge gap by using a translational mouse model of mHFD exposure. Three-dimensional and ultrastructure analysis of the neurovascular unit (vasculature and parenchymal cells) in mHFD-exposed offspring revealed major alterations of the neurovascular organization and metabolism. These alterations were accompanied by changes in the expression of genes involved in metabolism and immunity, indicating that neurovascular changes may result from abnormal brain metabolism and immune regulation. In addition, mHFD-exposed offspring showed persisting behavioural alterations reminiscent of neurodevelopmental disorders, specifically an increase in stereotyped and repetitive behaviours into adulthood.


Subject(s)
Behavior, Animal/physiology , Cerebral Cortex , Diet, High-Fat/adverse effects , Maternal Exposure , Microglia/pathology , Animals , Cerebral Cortex/blood supply , Cerebral Cortex/cytology , Cerebral Cortex/pathology , Female , Male , Mice , Pregnancy , Prenatal Exposure Delayed Effects
15.
Environ Microbiol ; 24(6): 2732-2746, 2022 06.
Article in English | MEDLINE | ID: mdl-34995397

ABSTRACT

Dalbergoids are typified by crack-entry symbiosis which is evidenced to be Nod Factor (NF)-independent in several Aeschynomene legumes. Natural symbionts of the dalbergoid legume Arachis hypogaea are always NF-producing, prompting us to check whether symbiosis in this legume could also be NF-independent. For this, we followed the symbiosis with two NF-containing bradyrhizobial strains - SEMIA6144, a natural symbiont of Arachis and ORS285, a versatile nodulator of Aeschynomene legumes, along with their corresponding nodulation (nod) mutants. Additionally, we investigated NF-deficient bradyrhizobia like BTAi1, a natural symbiont of Aeschynomene indica and the WBOS strains that were natural endophytes of Oryza sativa, collected from an Arachis-Oryza intercropped field. While SEMIA6144ΔnodC was non-nodulating, both ORS285 and ORS285ΔnodB could induce functional nodulation, although with lower efficiency than SEMIA6144. On the other hand, all the NF-deficient strains - BTAi1, WBOS2 and WBOS4 showed comparable nodulation with ORS285 indicating Arachis to harbour an NF-independent mechanism of symbiosis. Intriguingly, symbiosis in Arachis, irrespective of whether it was NF-dependent or independent, was always associated with the curling or branching of the rosette root hairs at the lateral root bases. Thus, despite being predominantly described as an NF-dependent legume, Arachis does retain a vestigial, less-efficient form of NF-independent symbiosis.


Subject(s)
Bradyrhizobium , Fabaceae , Oryza , Arachis , Endophytes , Symbiosis , Vegetables
16.
Gerokomos (Madr., Ed. impr.) ; 32(3): 205-208, sept. 2021. tab, ilus
Article in Spanish | IBECS | ID: ibc-218635

ABSTRACT

La neuropatía ciática es una patología que se manifiesta en alteraciones mecánicas, funcionales y sensitivas de la extremidad afectada. Se presenta el caso de un paciente con neuropatía ciática iatrogénica que mostró evolución tórpida de las heridas quirúrgicas tras intervención de dedos en garra con inmovilización por agujas de Kirschner. Con un tratamiento basado en desbridamiento, cura húmeda y abordaje de la colonización crítica se consiguió alta en 45 días, con curas realizadas en domicilio por el paciente, y resolución completa en 60 días (AU)


Sciatic neuropathy is a pathology manifested in mechanical, functional and sensitive disorders in the affected limb. We report a case of iatrogenic sciatic neuropathy in a patient showing torpid evolution of postsurgical wounds after claw toes surgery with K-wire immobilization. Treatment was based in debridement, critical colonization contention and moist environment healing. The patient was released for self-treatment at home after 45 days and reported complete healing after 60 days (AU)


Subject(s)
Humans , Male , Adult , Sciatic Neuropathy/surgery , Surgical Wound Infection/nursing , Debridement , Treatment Outcome
17.
J Neuroinflammation ; 18(1): 178, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34399779

ABSTRACT

BACKGROUND: Zika virus (ZIKV) has been associated with several neurological complications in adult patients. METHODS: We used a mouse model deficient in TRIF and IPS-1 adaptor proteins, which are involved in type I interferon production, to study the role of microglia during brain infection by ZIKV. Young adult mice were infected intravenously with the contemporary ZIKV strain PRVABC59 (1 × 105 PFUs/100 µL). RESULTS: Infected mice did not present overt clinical signs of the disease nor body weight loss compared with noninfected animals. However, mice exhibited a viremia and a brain viral load that were maximal (1.3 × 105 genome copies/mL and 9.8 × 107 genome copies/g of brain) on days 3 and 7 post-infection (p.i.), respectively. Immunohistochemistry analysis showed that ZIKV antigens were distributed in several regions of the brain, especially the dorsal hippocampus. The number of Iba1+/TMEM119+ microglia remained similar in infected versus noninfected mice, but their cell body and arborization areas significantly increased in the stratum radiatum and stratum lacunosum-moleculare layers of the dorsal hippocampus cornu ammoni (CA)1, indicating a reactive state. Ultrastructural analyses also revealed that microglia displayed increased phagocytic activities and extracellular digestion of degraded elements during infection. Mice pharmacologically depleted in microglia with PLX5622 presented a higher brain viral load compared to untreated group (2.8 × 1010 versus 8.5 × 108 genome copies/g of brain on day 10 p.i.) as well as an increased number of ZIKV antigens labeled with immunogold in the cytoplasm and endoplasmic reticulum of neurons and astrocytes indicating an enhanced viral replication. Furthermore, endosomes of astrocytes contained nanogold particles together with digested materials, suggesting a compensatory phagocytic activity upon microglial depletion. CONCLUSIONS: These results indicate that microglia are involved in the control of ZIKV replication and/or its elimination in the brain. After depletion of microglia, the removal of ZIKV-infected cells by phagocytosis could be partly compensated by astrocytes.


Subject(s)
Brain/virology , Microglia/metabolism , Neurons/metabolism , Phagocytosis/physiology , Zika Virus Infection/metabolism , Animals , Brain/metabolism , Mice , Microglia/virology , Neurons/virology
18.
Mol Plant ; 14(6): 937-948, 2021 06 07.
Article in English | MEDLINE | ID: mdl-33689931

ABSTRACT

Plant long noncoding RNAs (lncRNAs) have emerged as important regulators of chromatin dynamics, impacting on transcriptional programs leading to different developmental outputs. The lncRNA AUXIN-REGULATED PROMOTER LOOP (APOLO) directly recognizes multiple independent loci across the Arabidopsis genome and modulates their three-dimensional chromatin conformation, leading to transcriptional shifts. Here, we show that APOLO recognizes the locus encoding the root hair (RH) master regulator ROOT HAIR DEFECTIVE 6 (RHD6) and controls RHD6 transcriptional activity, leading to cold-enhanced RH elongation through the consequent activation of the transcription factor gene RHD6-like RSL4. Furthermore, we demonstrate that APOLO interacts with the transcription factor WRKY42 and modulates its binding to the RHD6 promoter. WRKY42 is required for the activation of RHD6 by low temperatures and WRKY42 deregulation impairs cold-induced RH expansion. Collectively, our results indicate that a novel ribonucleoprotein complex with APOLO and WRKY42 forms a regulatory hub to activate RHD6 by shaping its epigenetic environment and integrate signals governing RH growth and development.


Subject(s)
Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Indoleacetic Acids/metabolism , Plant Roots/growth & development , RNA, Long Noncoding/metabolism , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Proliferation/physiology , Chromatin/metabolism , Cold Temperature , Gene Expression Regulation, Plant , Plant Development/genetics , Plant Roots/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic , Transcription Factors/genetics
19.
Front Neurosci ; 14: 903, 2020.
Article in English | MEDLINE | ID: mdl-33071723

ABSTRACT

The immune system is essential for maintaining homeostasis, as well as promoting growth and healing throughout the brain and body. Considering that immune cells respond rapidly to changes in their microenvironment, they are very difficult to study without affecting their structure and function. The advancement of non-invasive imaging methods greatly contributed to elucidating the physiological roles performed by immune cells in the brain across stages of the lifespan and contexts of health and disease. For instance, techniques like two-photon in vivo microscopy were pivotal for studying microglial functional dynamics in the healthy brain. Through these observations, their interactions with neurons, astrocytes, blood vessels and synapses were uncovered. High-resolution electron microscopy with immunostaining and 3D-reconstruction, as well as super-resolution fluorescence microscopy, provided complementary insights by revealing microglial interventions at synapses (phagocytosis, trogocytosis, synaptic stripping, etc.). In addition, serial block-face scanning electron microscopy has provided the first 3D reconstruction of a microglial cell at nanoscale resolution. This review will discuss the technical toolbox that currently allows to study microglia and other immune cells in the brain, as well as introduce emerging methods that were developed and could be used to increase the spatial and temporal resolution of neuroimmune imaging. A special attention will also be placed on positron emission tomography and the development of selective functional radiotracers for microglia and peripheral macrophages, considering their strong potential for research translation between animals and humans, notably when paired with other imaging modalities such as magnetic resonance imaging.

20.
J Neuroinflammation ; 17(1): 264, 2020 Sep 05.
Article in English | MEDLINE | ID: mdl-32891154

ABSTRACT

BACKGROUND: Maternal nutrition is critical for proper fetal development. While increased nutrient intake is essential during pregnancy, an excessive consumption of certain nutrients, like fat, can lead to long-lasting detrimental consequences on the offspring. Animal work investigating the consequences of maternal high-fat diet (mHFD) revealed in the offspring a maternal immune activation (MIA) phenotype associated with increased inflammatory signals. This inflammation was proposed as one of the mechanisms causing neuronal circuit dysfunction, notably in the hippocampus, by altering the brain-resident macrophages-microglia. However, the understanding of mechanisms linking inflammation and microglial activities to pathological brain development remains limited. We hypothesized that mHFD-induced inflammation could prime microglia by altering their specific gene expression signature, population density, and/or functions. METHODS: We used an integrative approach combining molecular (i.e., multiplex-ELISA, rt-qPCR) and cellular (i.e., histochemistry, electron microscopy) techniques to investigate the effects of mHFD (saturated and unsaturated fats) vs control diet on inflammatory priming, as well as microglial transcriptomic signature, density, distribution, morphology, and ultrastructure in mice. These analyses were performed on the mothers and/or their adolescent offspring at postnatal day 30. RESULTS: Our study revealed that mHFD results in MIA defined by increased circulating levels of interleukin (IL)-6 in the mothers. This phenotype was associated with an exacerbated inflammatory response to peripheral lipopolysaccharide in mHFD-exposed offspring of both sexes. Microglial morphology was also altered, and there were increased microglial interactions with astrocytes in the hippocampus CA1 of mHFD-exposed male offspring, as well as decreased microglia-associated extracellular space pockets in the same region of mHFD-exposed offspring of the two sexes. A decreased mRNA expression of the inflammatory-regulating cytokine Tgfb1 and microglial receptors Tmem119, Trem2, and Cx3cr1 was additionally measured in the hippocampus of mHFD-exposed offspring, especially in males. CONCLUSIONS: Here, we described how dietary habits during pregnancy and nurturing, particularly the consumption of an enriched fat diet, can influence peripheral immune priming in the offspring. We also found that microglia are affected in terms of gene expression signature, morphology, and interactions with the hippocampal parenchyma, in a partially sexually dimorphic manner, which may contribute to the adverse neurodevelopmental outcomes on the offspring.


Subject(s)
Diet, High-Fat , Hippocampus/pathology , Inflammation/pathology , Maternal Nutritional Physiological Phenomena/physiology , Microglia/pathology , Prenatal Exposure Delayed Effects/metabolism , Adolescent , Animals , CX3C Chemokine Receptor 1/metabolism , Cell Shape/physiology , Female , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Inflammation/metabolism , Interleukin-6/blood , Lipopolysaccharides/pharmacology , Male , Membrane Glycoproteins/metabolism , Membrane Proteins/metabolism , Mice , Microglia/drug effects , Microglia/metabolism , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Pregnancy , Receptors, Immunologic/metabolism , Sex Factors , Transforming Growth Factor beta1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...