Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters











Publication year range
1.
mBio ; : e0183424, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39194253

ABSTRACT

Chlamydia trachomatis has adapted to subvert signaling in epithelial cells to ensure successful intracellular development. Interferon-γ (IFNγ) produced by recruited lymphocytes signals through the JAK/STAT pathway to restrict chlamydial growth in the genital tract. However, during Chlamydia infection in vitro, addition of IFNγ does not fully induce nuclear localization of its transcription factor STAT1 and expression of its target gene, IDO1. We hypothesize that this altered interferon response is a result of Chlamydia targeting components of the IFNγ-JAK/STAT pathway. To assess the ability of replicating Chlamydia to dampen interferon signaling, HEp2 human epithelial cells were infected with C. trachomatis serovar L2 for 24 hours prior to exposure to physiologically relevant levels of IFNγ (500 pg/mL). This novel approach enabled us to observe reduced phospho-activation of both STAT1 and its kinase Janus Kinase 2 (JAK2) in infected cells compared with mock-infected cells. Importantly, basal JAK2 and STAT1 transcript and protein levels were dampened by infection even in the absence of interferon, which could have implications for cytokine signaling beyond IFNγ. Additionally, target genes IRF1, GBP1, APOL3, IDO1, and SOCS1 were not fully induced in response to IFNγ exposure. Infection-dependent decreases in transcript, protein, and phosphoprotein were rescued when de novo bacterial protein synthesis was inhibited with chloramphenicol, restoring expression of IFNγ-target genes. Similar Chlamydia-dependent dampening of STAT1 and JAK2 transcript levels was observed in infected HeLa and END1 endocervical cells and in HEp2s infected with C. trachomatis serovar D, suggesting a conserved mechanism of dampening the interferon response by reducing the availability of key signaling components. IMPORTANCE: As an obligate intracellular pathogen that has evolved to infect the genital epithelium, Chlamydia has developed strategies to prevent detection and antimicrobial signaling in its host to ensure its survival and spread. A major player in clearing Chlamydia infections is the inflammatory cytokine interferon-γ (IFNγ), which is produced by immune cells that are recruited to the site of infection. Reports of IFNγ levels in endocervical specimens from Chlamydia-infected patients range from 1 to 350 pg/mL, while most in vitro studies of the effects of IFNγ on chlamydial growth have used 15-85-fold higher concentrations. By using physiologically relevant concentrations of IFNγ, we were able to assess Chlamydia's ability to modulate its signaling. We found that Chlamydia decreases the expression of multiple components that are required for inducing gene expression by IFNγ, providing a possible mechanism by which Chlamydia trachomatis can attenuate the immune response in the female genital tract to cause long-term infections.

2.
Neuropharmacology ; 225: 109401, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36565853

ABSTRACT

Certain bacteria possess the ability to reduce anxiety- and stress-related behaviors through the gut microbiome-brain axis. Such bacteria are called psychobiotics, and can be used to improve mood and cognition. However, only a few bacteria have been characterized as psychobiotics, and their exact mechanism of action remains unclear. Hence, in this study we analyzed three different species under the Lactobacillacea family, namely, Lactobacillus delbrueckii, Lacticaseibacillus casei, and Lacticaseibacillus paracasei for their potential psychobiotic activities. L. delbrueckii treatment reduced anxiety-like behavior and increased brain and gut glutamic acid decarboxylase (gad) gene expression in zebrafish. It also altered zebrafish gut microbial community as determined by PCR-DGGE and 16S rRNA-based metagenomics analysis. Overall, this paper showed that L. delbrueckii but not L. paracasei and L. casei, induced a consistent improvement in anxiety-like behavior in zebrafish, implicating its potential role as a psychobiotic to reduce anxiety. This article is part of the Special Issue on 'Microbiome & the Brain: Mechanisms & Maladies'.


Subject(s)
Gastrointestinal Microbiome , Lactobacillus delbrueckii , Animals , Lactobacillus delbrueckii/genetics , Lactobacillus delbrueckii/metabolism , Zebrafish/genetics , Zebrafish/microbiology , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Brain/metabolism , Anxiety
4.
Sci Rep ; 8(1): 8476, 2018 05 31.
Article in English | MEDLINE | ID: mdl-29855501

ABSTRACT

The intracellular bacterial pathogen, Chlamydia trachomatis, is a tryptophan auxotroph. Therefore, induction of the host tryptophan catabolizing enzyme, indoleamine-2,3-dioxgenase-1 (IDO1), by interferon gamma (IFNγ) is one of the primary protective responses against chlamydial infection. However, despite the presence of a robust IFNγ response, active and replicating C. trachomatis can be detected in cervical secretions of women. We hypothesized that a primary C. trachomatis infection may evade the IFNγ response, and that the protective effect of this cytokine results from its activation of tryptophan catabolism in bystander cells. To test this hypothesis, we developed a novel method to separate a pool of cells exposed to C. trachomatis into pure populations of live infected and bystander cells and applied this technique to distinguish between the effects of IFNγ on infected and bystander cells. Our findings revealed that the protective induction of IDO1 is suppressed specifically within primary infected cells because Chlamydia attenuates the nuclear import of activated STAT1 following IFNγ exposure, without affecting STAT1 levels or phosphorylation. Critically, the IFNγ-mediated induction of IDO1 activity is unhindered in bystander cells. Therefore, the IDO1-mediated tryptophan catabolism is functional in these cells, transforming these bystander cells into inhospitable hosts for a secondary C. trachomatis infection.


Subject(s)
Chlamydia trachomatis/drug effects , Interferon-gamma/pharmacology , Bystander Effect/drug effects , Cell Line , Cell Nucleus/metabolism , Chlamydia trachomatis/physiology , Female , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Phosphorylation/drug effects , Receptors, Interferon/metabolism , STAT1 Transcription Factor/metabolism , Tryptophan/metabolism , Interferon gamma Receptor
5.
PLoS One ; 12(8): e0183101, 2017.
Article in English | MEDLINE | ID: mdl-28797112

ABSTRACT

Chlamydia trachomatis (CT) is the leading sexually transmitted bacterial infection. The continued global burden of CT infection strongly predicates the need for a vaccine to supplement current chlamydial control programs. The correlates of protection against CT are currently unknown, but they must be carefully defined to guide vaccine design. The localized nature of chlamydial infection in columnar epithelial cells of the genital tract necessitates investigation of immunity at the site of infection. The purpose of this study was to develop a sensitive whole bacterial enzyme-linked immunosorbent assay (ELISA) to quantify and compare CT-specific IgG and IgA in sera and genital secretions from CT-infected women. To achieve this, elementary bodies (EBs) from two of the most common genital serovars (D and E) were attached to poly-L-lysine-coated microtiter plates with glutaraldehyde. EB attachment and integrity were verified by the presence of outer membrane antigens and the absence of bacterial cytoplasmic antigens. EB-specific IgG and IgA standards were developed by pooling sera with high titers of CT-specific antibodies from infected women. Serum, endocervical and vaginal secretions, and endocervical cytobrush specimens from CT-infected women were used to quantify CT-specific IgG and IgA which were then normalized to total IgG and IgA, respectively. Analyses of paired serum and genital samples revealed significantly higher proportions of EB-specific antibodies in genital secretions compared to sera. Cervical and vaginal secretions and cytobrush specimens had similar proportions of EB-specific antibodies, suggesting any one of these genital sampling techniques could be used to quantify CT-specific antibodies when appropriate normalization methodologies are implemented. Overall, these results illustrate the need to investigate genital tract CT antibody responses, and our assay provides a useful quantitative tool to assess natural immunity in defined clinical groups and CT vaccine trials.


Subject(s)
Antibodies, Bacterial/immunology , Chlamydia Infections/immunology , Chlamydia trachomatis/immunology , Adult , Animals , Antibodies, Bacterial/analysis , Antibodies, Bacterial/blood , Cell Line , Cervix Uteri/immunology , Cervix Uteri/metabolism , Cervix Uteri/microbiology , Chlamydia Infections/blood , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin A/analysis , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/analysis , Immunoglobulin G/blood , Immunoglobulin G/immunology , Mice , Vagina/immunology , Vagina/metabolism , Vagina/microbiology , Young Adult
6.
Am J Reprod Immunol ; 77(5)2017 05.
Article in English | MEDLINE | ID: mdl-28185345

ABSTRACT

Successful pregnancy is regulated by several soluble factors that are differentially expressed throughout gestation. These factors are important to initiate and establish embryo implantation and parturition. Senescent cells, which undergo permanent cell proliferation arrest in response to stress, also produce several secreted factors, referred to as the senescence-associated secretory phenotype (SASP). Here, we review some of the secreted factors found during early and late pregnancy and compare their expression profile with those of the SASP. Because senescent cells are found in the uterus and embryo during pregnancy, we hypothesize that SASP factors contribute to successful pregnancy. We discuss how senescent cells may support embryo development and signal parturition. We provide evidences for potential contribution of SASP to the physiology and pathophysiology of pregnancy.


Subject(s)
Cellular Senescence/physiology , Pregnancy/physiology , Animals , Embryonic Development/physiology , Female , Humans , Parturition/metabolism
7.
Front Microbiol ; 7: 1983, 2016.
Article in English | MEDLINE | ID: mdl-28018315

ABSTRACT

Antibiotic resistance is a global public health problem that requires our attention. Indiscriminate antibiotic use is a major contributor in the introduction of selective pressures in our natural environments that have significantly contributed in the rapid emergence of antibiotic-resistant microbial strains. The use of probiotics in lieu of antibiotic therapy to address certain health conditions in both animals and humans may alleviate these antibiotic-mediated selective pressures. Probiotic use is defined as the actual application of live beneficial microbes to obtain a desired outcome by preventing diseased state or improving general health. Multiple studies have confirmed the beneficial effects of probiotic use in the health of both livestock and humans. As such, probiotics consumption is gaining popularity worldwide. However, concerns have been raised in the use of some probiotics strains that carry antibiotic resistance genes themselves, as they have the potential to pass the antibiotic resistance genes to pathogenic bacteria through horizontal gene transfer. Therefore, with the current public health concern on antibiotic resistance globally, in this review, we underscore the need to screen probiotic strains that are used in both livestock and human applications to assure their safety and mitigate their potential in significantly contributing to the spread of antibiotic resistance genes in our natural environments.

8.
J Bacteriol Parasitol ; 7(4)2016 Aug.
Article in English | MEDLINE | ID: mdl-27695641

ABSTRACT

Chlamydia trachomatis is an obligate intracellular bacterial pathogen that cannot synthesize several amino acids, including tryptophan. Rather, C. trachomatis acquires these essential metabolites from its human host cell. Chlamydial dependence on host-provided tryptophan underlies a major host defense mechanism against the bacterium; namely, the induction of the host tryptophan-catabolizing enzyme, indoleamine 2,3- dioxygenase (IDO1) by interferon gamma (IFNγ), which leads to eradication of C. trachomatis by tryptophan starvation. For this reason, IFNγ is proposed to be the major host protective cytokine against genital C. trachomatis infections. The protective effect of IFNγ against C. trachomatis can be recapitulated in vitro using epithelial cell-lines such as the cervical carcinoma derived cell-line Hela, the Hela subclone HEp-2, and the cervical carcinoma derived cell-line ME180. Addition of IFNγ to these cells infected with C. trachomatis results in a strong bactericidal or bacteriostatic effect dependent on the concentration of IFNγ administered. Unlike Hela, HEp-2, and ME180, there are other human epithelial, or epithelial-like cell-lines where administration of IFNγ does not affect chlamydial replication, although they express the IFNγ receptor (IFNGR). In this report, we have characterized the mechanisms that underlie this dichotomy using the cell-lines C33A and 293. Akin to Hela, C33A is derived from a human cervical carcinoma, while 293 cells were produced by transfection of adenovirus type 5 DNA into embryonic kidney cells. We demonstrate that although IFNGR is expressed at high levels in C33A cells, its ligation by IFNγ does not result in STAT1 phosphorylation, an essential step for activation of the IDO1 promoter. Our results indicate that although the IFNγ-dependent signaling cascade is intact in 293 cells; the IDO1 promoter is not activated in these cells because it is epigenetically silenced, most likely by DNA methylation. Because polymorphisms in IFNγ, IFNGR, and the IDO1 promoter are known to affect other human infections or diseased states, our results indicate that the effect of allelic differences in these genes and the pathways they activate should be evaluated for their effect on C. trachomatis pathology.

9.
PLoS One ; 11(9): e0163174, 2016.
Article in English | MEDLINE | ID: mdl-27658027

ABSTRACT

Chlamydia trachomatis is an obligate intracellular pathogen that requires specific essential nutrients from the host cell, one of which is the amino acid tryptophan. In this context interferon gamma (IFNγ) is the major host protective cytokine against chlamydial infections because it induces the expression of the host enzyme, indoleamine 2,3-dioxygenase 1, that degrades tryptophan, thereby restricting bacterial replication. The mechanism by which IFNγ acts has been dissected in vitro using epithelial cell-lines such as HeLa, HEp-2, or the primary-like endocervical cell-line A2EN. All these cell-lines express the high-risk human papillomavirus oncogenes E6 & E7. While screening cell-lines to identify those suitable for C. trachomatis co-infections with other genital pathogens, we unexpectedly found that tryptophan starvation did not completely block chlamydial development in cell-lines that were HR-HPV negative, such as C33A and 293. Therefore, we tested the hypothesis that HR-HPV oncogenes modulate the effect of tryptophan starvation on chlamydial development by comparing chlamydial development in HeLa and C33A cell-lines that were both derived from cervical carcinomas. Our results indicate that during tryptophan depletion, unlike HeLa, C33A cells generate sufficient intracellular tryptophan via proteasomal activity to permit C. trachomatis replication. By generating stable derivatives of C33A that expressed HPV16 E6, E7 or E6 & E7, we found that E6 expression alone was sufficient to convert C33A cells to behave like HeLa during tryptophan starvation. The reduced tryptophan levels in HeLa cells have a biological consequence; akin to the previously described effect of IFNγ, tryptophan starvation protects C. trachomatis from clearance by doxycycline in HeLa but not C33A cells. Curiously, when compared to the known Homo sapiens proteome, the representation of tryptophan in the HR-HPV E6 & E6AP degradome is substantially lower, possibly providing a mechanism that underlies the lowered intracellular free tryptophan levels in E6-expressing cells during starvation.

10.
Reprod Sci ; 23(3): 289-301, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26335176

ABSTRACT

The divergent requirement for tolerance to support conception and protective response against sexually transmitted infections defines the unique immunological dynamics in the female reproductive tract (FRT). In part, these requirements are achieved by the cyclic modulation of cytolytic CD8T cell function in the FRT that underlie the respective immunosuppressive and immunocompetent milieus during the secretory and proliferative phases of the menstrual cycle. The CD8T cell function can be dampened by exposure to indoleamine 2,3-dioxygenase and/or arginase enzymes. Indeed, these 2 enzymes are known as primary inducers of immune suppression in tumor microenvironments. This review discusses the intriguing parallel expression of these 2 enzymes in tumor microenvironments and in the secretory endometrium. We surmise that investigating the underlying natural mechanisms that suppress and restore the immunocompetence of CD8T cells in the FRT each month may provide valuable insights into ways to artificially recapitulate these mechanisms and inhibit immune suppression in tumor microenvironments.


Subject(s)
Arginase/biosynthesis , CD8-Positive T-Lymphocytes/enzymology , Endometrium/enzymology , Endometrium/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/biosynthesis , Tumor Microenvironment/physiology , Animals , Arginase/genetics , Cell Proliferation/physiology , Female , Gene Expression Regulation, Neoplastic , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
11.
BMC Immunol ; 13: 66, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23216954

ABSTRACT

BACKGROUND: The local tissue microenvironment plays an important role in the induction, homing, maintenance and development of effector functions of T cells. Thus, site-specific differences in phenotypes of mucosal and systemic T cell populations have been observed. Chlamydia trachomatis most commonly infects the endocervix in women, yet little is known about Chlamydia-specific effector T cell immunity at this unique mucosal site. Our previous flow-cytometry-based study of cervical-cytobrush retrieved cells indicated that CD8 T cells are significantly increased in the C. trachomatis-infected human endocervix. The cytolytic function of CD8 T cells is important in the protective immunity against many intracellular pathogens, and requires the cytolytic granule perforin to facilitate the entry of other molecules that mediate the lysis of target cells. Determination of perforin expression of the CD8 T cell population in the endocervix would therefore provide insights on the granule-mediated cytolytic potential of these cells at this site. RESULTS: Our histological data revealed that C. trachomatis-infected tissues have significantly higher numbers of CD3 and CD8 T cells compared to non-infected tissues (p<0.01), and that the majority of CD8+ cells do not express perforin in situ. A subsequent flow cytometric analysis of paired blood and endocervix-derived cells (n=16) revealed that while all the CD8 T cell subsets: naïve, effector memory (TEM), central memory (TCM) and terminally differentiated effector memory (TEMRA) can be found in the blood, the endocervix is populated mainly by the TEM CD8 T cell subset. Our data also showed that perforin expression in the TEM population is significantly lower in the endocervix than in the blood of C. trachomatis positive women (n=15; p<0.0001), as well as in C. trachomatis-negative individuals (n=6; p<0.05). Interestingly, our in vitro co-culture study suggests that the exposure of HeLa 229 cervical epithelial cells to IFN gamma could potentially induce a decrease in perforin content in CD8 TEM cells in the same microenvironment. CONCLUSIONS: The low perforin content of CD8 TEM cells in the endocervix, the local site of C. trachomatis infection in women, may reflect the unique immunological environment that balances immune protection against sexually transmitted infections and immune- tolerance to support conception.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cervix Uteri/immunology , Cervix Uteri/microbiology , Chlamydia Infections/immunology , Chlamydia trachomatis/physiology , Immunologic Memory/immunology , Perforin/metabolism , Adolescent , Adult , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Cellular Microenvironment/drug effects , Cervix Uteri/pathology , Chlamydia Infections/microbiology , Chlamydia Infections/pathology , Chlamydia trachomatis/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Flow Cytometry , Granzymes/metabolism , HeLa Cells , Humans , Immunohistochemistry , Immunologic Memory/drug effects , Interferon-gamma/pharmacology , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Male , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , Young Adult
12.
Curr HIV Res ; 10(3): 218-27, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22384841

ABSTRACT

Among the now pandemic sexually transmitted infections (STIs), Chlamydia trachomatis (C. trachomatis) is the predominant bacterial pathogen and human immunodeficiency virus type 1 (HIV-1) is the most lethal of the viral pathogens. The female genital tract is the primary site for heterosexual transmission of both C. trachomatis and HIV-1. Infection with C. trachomatis, and with a variety of other STIs, increases the risk for transmission of HIV-1, although the mechanisms for this finding remain unclear. We have used in vitro modeling to assess the mechanisms by which infection with genital C. trachomatis serovars might increase the transmission of HIV-1 across the female genital tract. C. trachomatis infection of an immortalized endocervical epithelial cell line (A2EN) increases the cell surface expression of the HIV-1 alternative primary receptor, galactosyl ceramide (GalCer), and of the HIV-1 co-receptors, CXCR4 and CCR5. C. trachomatis infection also increases the binding of HIV-1 to A2EN cells, and, subsequently, increases levels of virus in co-cultures of HIV-exposed A2EN and susceptible MT4-R5 T cells. Finally, in vivo endocervical cell sampling reveals a dramatic increase in the number of CD4+, CXCR4 and/or CCR5 positive T cell targets in the endocervix of C. trachomatis positive women when compared to those who are C. trachomatis negative. This combination of in vitro and in vivo results suggests several mechanisms for increased transmission of HIV-1 across the endocervices of C. trachomatis-infected women.


Subject(s)
Cervix Uteri/immunology , Chlamydia Infections/immunology , Chlamydia trachomatis/pathogenicity , HIV Seropositivity/transmission , HIV-1 , Receptors, CCR5/immunology , Receptors, CXCR4/immunology , Base Sequence , Cell Line , Cervix Uteri/microbiology , Chlamydia Infections/microbiology , Chlamydia Infections/transmission , Disease Susceptibility , Female , HIV Seropositivity/immunology , HIV Seropositivity/microbiology , Humans , Virus Replication
13.
Infect Immun ; 79(11): 4425-37, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21911470

ABSTRACT

Gamma interferon (IFN-γ) induces expression of the tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase (IDO1) in human epithelial cells, the permissive cells for the obligate intracellular bacterium Chlamydia trachomatis. IDO1 depletes tryptophan by catabolizing it to kynurenine with consequences for C. trachomatis, which is a tryptophan auxotroph. In vitro studies reveal that tryptophan depletion can result in the formation of persistent (viable but noncultivable) chlamydial forms. Here, we tested the effects of the IDO1 inhibitor, levo-1-methyl-tryptophan (L-1MT), on IFN-γ-induced C. trachomatis persistence. We found that addition of 0.2 mM L-1MT to IFN-γ-exposed infected HeLa cell cultures restricted IDO1 activity at the mid-stage (20 h postinfection [hpi]) of the chlamydial developmental cycle. This delayed tryptophan depletion until the late stage (38 hpi) of the cycle. Parallel morphological and gene expression studies indicated a consequence of the delay was a block in the induction of C. trachomatis persistence by IFN-γ. Furthermore, L-1MT addition allowed C. trachomatis to undergo secondary differentiation, albeit with limited productive multiplication of the bacterium. IFN-γ-induced persistent infections in epithelial cells have been previously reported to be more resistant to doxycycline than normal productive infections in vitro. Pertinent to this observation, we found that L-1MT significantly improved the efficacy of doxycycline in clearing persistent C. trachomatis forms. It has been postulated that persistent forms of C. trachomatis may contribute to chronic chlamydial disease. Our findings suggest that IDO1 inhibitors such as L-1MT might provide a novel means to investigate, and potentially target, persistent chlamydial forms, particularly in conjunction with conventional therapeutics.


Subject(s)
Chlamydia trachomatis/drug effects , Epithelial Cells/microbiology , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Interferon-gamma/pharmacology , Tryptophan/analogs & derivatives , Anti-Bacterial Agents/pharmacology , Chlamydia trachomatis/physiology , Dose-Response Relationship, Drug , Doxycycline/pharmacology , HeLa Cells , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Kynurenine/analysis , Time Factors , Tryptophan/analysis , Tryptophan/pharmacology
14.
Infect Dis Obstet Gynecol ; 2011: 420905, 2011.
Article in English | MEDLINE | ID: mdl-21747639

ABSTRACT

Genital C. trachomatis infections typically last for many months in women. This has been attributed to several strategies by which C. trachomatis evades immune detection, including well-described methods by which C. trachomatis decreases the cell surface expression of the antigen presenting molecules major histocompatibility complex (MHC) class I, MHC class II, and CD1d in infected genital epithelial cells. We have harnessed new methods that allow for separate evaluation of infected and uninfected cells within a mixed population of chlamydia-infected endocervical epithelial cells to demonstrate that MHC class I downregulation in the presence of C. trachomatis is mediated by direct and indirect (soluble) factors. Such indirect mechanisms may aid in priming surrounding cells for more rapid immune evasion upon pathogen entry and help promote unfettered spread of C. trachomatis genital infections.


Subject(s)
Chlamydia Infections/microbiology , Chlamydia trachomatis/immunology , Histocompatibility Antigens Class I/biosynthesis , Cell Line, Tumor , Cervix Uteri/cytology , Cervix Uteri/microbiology , Chlamydia Infections/immunology , Chlamydia Infections/metabolism , Down-Regulation , Epithelial Cells/cytology , Epithelial Cells/microbiology , Female , Flow Cytometry , Histocompatibility Antigens Class I/immunology , Host-Pathogen Interactions , Humans , Microscopy, Fluorescence , Models, Biological
15.
J Biol Chem ; 282(10): 7368-75, 2007 Mar 09.
Article in English | MEDLINE | ID: mdl-17215251

ABSTRACT

Chlamydia trachomatis is an obligate intracellular pathogen that can persist in the urogenital tract. Mechanisms by which C. trachomatis evades clearance by host innate immune responses are poorly described. CD1d is MHC-like, is expressed by epithelial cells, and can signal innate immune responses by NK and NKT cells. Here we demonstrate that C. trachomatis infection down-regulates surface-expressed CD1d in human penile urethral epithelial cells through proteasomal degradation. A chlamydial proteasome-like activity factor (CPAF) interacts with the CD1d heavy chain, and CPAF-associated CD1d heavy chain is then ubiquitinated and directed along two distinct proteolytic pathways. The degradation of immature glycosylated CD1d was blocked by the proteasome inhibitor lactacystin but not by MG132, indicating that degradation was not via the conventional proteasome. In contrast, the degradation of non-glycosylated CD1d was blocked by lactacystin and MG132, consistent with conventional cellular cytosolic degradation of N-linked glycoproteins. Immunofluorescent microscopy confirmed the interruption of CD1d trafficking to the cell surface, and the dislocation of CD1d heavy chains into both the cellular cytosol and the chlamydial inclusion along with cytosolic CPAF. C. trachomatis targeted CD1d toward two distinct proteolytic pathways. Decreased CD1d surface expression may help C. trachomatis evade detection by innate immune cells and may promote C. trachomatis persistence.


Subject(s)
Antigens, CD1/metabolism , Chlamydia trachomatis/enzymology , Chlamydia trachomatis/pathogenicity , Proteasome Endopeptidase Complex/metabolism , Amino Acid Sequence , Antigens, CD1d , Cell Line , Chlamydia trachomatis/immunology , Epithelial Cells/microbiology , Humans , Immunity, Innate , Immunoprecipitation , Male , Microscopy, Fluorescence , Molecular Sequence Data
16.
J Antibiot (Tokyo) ; 59(9): 583-90, 2006 Sep.
Article in English | MEDLINE | ID: mdl-17136890

ABSTRACT

Structural features associated with the antimalarial activity of the marine natural product crambescidin 800 were studied using synthetic analogues of the related compound ptilomycalin A. The study suggests that the guanidine moiety is cytotoxic, whereas the spermidine-containing aliphatic chain increases activity. The most active analogue, compound 11, had in vitro activity against Plasmodium falciparum strain 3D7 (IC50=490 nM) that was stronger than the in vitro activity against murine L5178Y cells (IC50 = 8.5-59 microM). In vitro growth inhibition of liver stages of P. yoelii yoelii in mouse hepatocytes was observed (IC50 = 9.2 microM). The compound did not significantly prolong median survival time after a single subcutaneous administration of 80 mg/kg in P. berghei-infected mice. Compound 11 did not cause DNA fragmentation in an in vitro micronucleus assay.


Subject(s)
Antimalarials/chemistry , Antimalarials/pharmacology , Guanidine/analogs & derivatives , Malaria/drug therapy , Plasmodium falciparum/drug effects , Plasmodium yoelii/drug effects , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Animals , Antimalarials/toxicity , Cells, Cultured , Disease Models, Animal , Erythrocytes/parasitology , Guanidine/chemistry , Guanidine/pharmacology , Guanidine/toxicity , Hepatocytes/parasitology , Mice , Molecular Structure , Parasitic Sensitivity Tests , Spiro Compounds/toxicity , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL