Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37768168

ABSTRACT

We hypothesized that the provision of rumen-inert fat (RIF) to growing cattle (9 to 13 mo of age) would affect the expression of genes involved in lipid metabolism and thereby affect the size and number of adipocytes of steers slaughtered at 30 mo of age. Thirty steers with an average initial body weight (BW) of 239 ±â€…25 kg were allocated to six pens, balanced for BW and genetic merit for marbling, and assigned to one of two treatment groups: control (only basal diet) or test diet (basal diet with 200 g of RIF per day, on an as-fed basis) for 5 mo. Biopsy samples of longissimus lumborum (LM) muscle were then collected for analysis of fatty acid composition and gene expression. Both groups were then fed the same basal diets during the early and late fattening phases, without RIF, until slaughter (average shrunk BW = 759 kg). Supplementation with RIF increased the longissimus thoracis (LT) intramuscular fatty acid concentration at slaughter (P = 0.087) and numerically increased the quality grade score (P = 0.106). The LM intramuscular relative mRNA expression of genes such as PPARα, ZFP423 and SREBP1, FASN, SCD, FABP4, GPAT1, and DGAT2 were downregulated (P < 0.1) following RIF supplementation. Supplementation of RIF decreased (P < 0.1) diameter and concomitantly increased intramuscular adipocytes per viewing section at slaughter. This likely was caused by promotion of triacylglycerol hydrolysis during the growing phase. Another possible explanation is that the relative mRNA expression of gene ATGL was upregulated by RIF supplementation during the growing (P < 0.1) and the fattening phases (P < 0.05), while the genes associated with fatty acid uptake (FABP4) and esterification (DGAT2) were downregulated during the growing phase and upregulated (P < 0.1) during the fattening phase. This implies that the lipid turnover rate was higher for steers during the growing than fattening phase. This study demonstrated that RIF supplementation during the growing phase induced a carryover effect on the lipogenic transcriptional regulation involved in adipocyte lipid content of intramuscular adipose tissue; increased triacylglycerol hydrolysis during the growing phase subsequently was followed by increased lipid accumulation during the fattening phases.


Rumen inert fat (RIF) is a type of fat supplement that is used in the diets of beef cattle as early as 6 mo of age in calves and continues through the finishing period to improve the dietary energy density which can be used by the animal to deposit more lipid in the muscle tissue. However, for Hanwoo beef cattle, the precise time of RIF supplementation has not yet been determined. This study hypothesized that supplementing RIF at the growing phase (9 to 13 mo of age) would have a positive influence on the marbling characteristics of meat at slaughter. The growth rate and performance of steers were not improved by RIF supplementation, however, an increase in intramuscular fatty acid content was noted that was accompanied by the increased number of intramuscular adipocytes and decreased intramuscular adipocyte diameter. Supportively, upregulation of the genes associated with fatty acid uptake and esterification during the fattening phase of RIF-fed animals was noted. Overall, supplementing RIF at the growing stage could improve the lipid content of the meat which is supported by the increased lipid hydrolysis during the growing phase and followed by increased lipid accumulation during the fattening phases.


Subject(s)
Adipose Tissue , Rumen , Cattle , Animals , Rumen/metabolism , Adipose Tissue/metabolism , Adipocytes/metabolism , Fatty Acids/metabolism , Diet/veterinary , Dietary Supplements , Gene Expression , RNA, Messenger/metabolism , Triglycerides/metabolism , Animal Feed/analysis , Body Composition
2.
Front Microbiol ; 13: 892605, 2022.
Article in English | MEDLINE | ID: mdl-35615517

ABSTRACT

We identified metabolites in the seeds of Pharbitis nil (PA) and evaluated their effects on rumen methanogenesis, fiber digestibility, and the rumen microbiome in vitro and in sacco. Four rumen-cannulated Holstein steers (mean body weight 507 ± 32 kg) were used as inoculum donor for in vitro trial and live continuous culture system for in sacco trial. PA was tested in vitro at doses ranging from 4.5 to 45.2% dry matter (DM) substrate. The in sacco trial was divided into three phases: a control phase of 10 days without nylon bags containing PA in the rumen, a treatment phase of 11 days in which nylon bags containing PA (180 g) were placed in the rumen, and a recovery phase of 10 days after removing the PA-containing bags from the rumen. Rumen headspace gas and rumen fluid samples were collected directly from the rumen. PA is enriched in polyunsaturated fatty acids dominated by linoleic acid (C18:2) and flavonoids such as chlorogenate, quercetin, quercetin-3-O-glucoside, and quinic acid derivatives. PA decreased (p < 0.001) methane (CH4) production linearly in vitro with a reduction of 24% at doses as low as 4.5% DM substrate. A quadratic increase (p = 0.078) in neutral detergent fiber digestibility was also noted, demonstrating that doses < 9% DM were optimal for simultaneously enhancing digestibility and CH4 reduction. In sacco, a 50% decrease (p = 0.087) in CH4 coupled with an increase in propionate suggested increased biohydrogenation in the treatment phase. A decrease (p < 0.005) in ruminal ammonia nitrogen (NH3-N) was also noted with PA in the rumen. Analysis of the rumen microbiome revealed a decrease (p < 0.001) in the Bacteroidetes-to-Firmicutes ratio, suggesting PA to have antiprotozoal potential. At the genus level, a 78% decrease in Prevotella spp. and a moderate increase in fibrolytic Ruminococcus spp. were noted in the treatment phase. In silico binding of PA metabolites to cyclic GMP-dependent protein kinase of Entodinium caudatum supported the antiprotozoal effect of PA. Overall, based on its high nutrient value and antiprotozoal activity, PA could probably replace the ionophores used for CH4 abatement in the livestock industry.

3.
Animals (Basel) ; 11(12)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34944155

ABSTRACT

The present study evaluated the influence of dietary protein level on growth performance, fatty acid composition, and the expression of lipid metabolic genes in intramuscular adipose tissues from 18- to 23-month-old Hanwoo steers, representing the switching point of the lean-to-fat ratio. Forty steers with an initial live weight of 486 ± 37 kg were assigned to one of two treatment groups fed either a concentrate diet with 14.5% CP and or with 17% CP for 6 months. Biopsy samples of intramuscular tissue were collected to analyze the fatty acid composition and gene expression at 23 months of age. Throughout the entire experimental period, all steers were restrained twice daily to allow individual feeding. Growth performance, blood metabolites, and carcass traits, according to ultrasonic measurements, were not affected by the experimental diets. The high-protein diet significantly increased the expression of intramuscular PPARα (p < 0.1) and LPL (p < 0.05) but did not affect genes involved in fatty acid uptake (CD36 and FABP4) nor lipogenesis (ACACA, FASN, and SCD). In addition, it downregulated intramuscular VLCAD (p < 0.01) related to lipogenesis but also GPAT1 (p = 0.001), DGAT2 (p = 0.016), and SNAP23 (p = 0.057), which are involved in fatty acid esterification and adipocyte size. Hanwoo steers fed a high-protein diet at 18-23 months of age resulted in a relatively lower lipid turnover rate than steers fed a low-protein diet, which could be responsible for shortening the feeding period.

4.
Front Microbiol ; 12: 701081, 2021.
Article in English | MEDLINE | ID: mdl-34354694

ABSTRACT

Our previous research revealed the advantages of separate feeding (SF) systems compared to total mixed ration (TMR) in terms of ruminal methane (CH4) production. The purpose of this experiment was to confirm the advantage of SF as a nutritional strategy for CH4 mitigation, and to determine the effects of different feeding systems (TMR and SF) on the rumen microbiome and associated metagenome of two different breeds and on CH4 emissions. We randomly allocated four Holstein (305 ± 29 kg) and four Hanwoo steers (292 ± 24 kg) to two groups; the steers were fed a commercial concentrate with tall fescue (75:25) as TMR or SF, in a crossover design (two successive 22-day periods). Neither feeding systems nor cattle breeds had an effect on the total tract digestibility of nutrients. The TMR feeding system and Hanwoo steers generated significantly more CH4 (P < 0.05) and had a higher yield [g/d and g/kg dry matter intake (DMI)] compared to the SF system and Holstein steers. A larger rumen acetate:propionate ratio was observed for the TMR than the SF diet (P < 0.05), and for Hanwoo than Holstein steers (P < 0.001), clearly reflecting a shift in the ruminal H2 sink toward CH4 production. The linear discriminant analysis (LDA) effect size (LEfSe) revealed a greater abundance (α < 0.05 and LDA > 2.0) of operational taxonomic units (OTUs) related to methanogenesis for Hanwoo steers compared to Holstein steers. Kendall's correlation analysis revealed wide variation of microbial co-occurrence patterns between feeding systems, indicating differential H2 thermodynamics in the rumen. A metagenome analysis of rumen microbes revealed the presence of 430 differentially expressed genes, among which 17 and 27 genes exhibited positive and negative associations with CH4 production, respectively (P < 0.001). A strong interaction between feeding system and breed was observed for microbial and metagenomic abundance. Overall, these results suggest that the TMR feeding system produces more CH4, and that Hanwoo cattle are higher CH4 emitters than SF diet and Holstein cattle, respectively. Interestingly, host-associated microbial interactions differed within each breed depending on the feeding system, which indicated that breed-specific feeding systems should be taken into account for farm management.

5.
Animals (Basel) ; 11(6)2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34200254

ABSTRACT

This study was performed to update and generate prediction equations for converting digestible energy (DE) to metabolizable energy (ME) for Korean Hanwoo beef cattle, taking into consideration the gender (male and female) and body weights (BW above and below 350 kg) of the animals. The data consisted of 141 measurements from respiratory chambers with a wide range of diets and energy intake levels. A simple linear regression of the overall unadjusted data suggested a strong relationship between the DE and ME (Mcal/kg DM): ME = 0.8722 × DE + 0.0016 (coefficient of determination (R2) = 0.946, root mean square error (RMSE) = 0.107, p < 0.001 for intercept and slope). Mixed-model regression analyses to adjust for the effects of the experiment from which the data were obtained similarly showed a strong linear relationship between the DE and ME (Mcal/kg of DM): ME = 0.9215 × DE - 0.1434 (R2 = 0.999, RMSE = 0.004, p < 0.001 for the intercept and slope). The DE was strongly related to the ME for both genders: ME = 0.8621 × DE + 0.0808 (R2 = 0.9600, RMSE = 0.083, p < 0.001 for the intercept and slope) and ME = 0.7785 × DE + 0.1546 (R2 = 0.971, RMSE = 0.070, p < 0.001 for the intercept and slope) for male and female Hanwoo cattle, respectively. By BW, the simple linear regression similarly showed a strong relationship between the DE and ME for Hanwoo above and below 350 kg BW: ME = 0.9833 × DE - 0.2760 (R2 = 0.991, RMSE = 0.055, p < 0.001 for the intercept and slope) and ME = 0.72975 × DE + 0.38744 (R2 = 0.913, RMSE = 0.100, p < 0.001 for the intercept and slope), respectively. A multiple regression using the DE and dietary factors as independent variables did not improve the accuracy of the ME prediction (ME = 1.149 × DE - 0.045 × crude protein + 0.011 × neutral detergent fibre - 0.027 × acid detergent fibre + 0.683).

6.
Animals (Basel) ; 11(4)2021 Apr 04.
Article in English | MEDLINE | ID: mdl-33916571

ABSTRACT

Indiscriminate use of antibiotics can result in antibiotic residues in animal products; thus, plant compounds may be better alternative sources for mitigating methane (CH4) production. An in vitro screening experiment was conducted to evaluate the potential application of 152 dry methanolic or ethanolic extracts from 137 plant species distributed in East Asian countries as anti-methanogenic additives in ruminant feed. The experimental material consisted of 200 mg total mixed ration, 20 mg plant extract, and 30 mL diluted ruminal fluid-buffer mixture in 60 mL serum bottles that were sealed with rubber stoppers and incubated at 39 °C for 24 h. Among the tested extracts, eight extracts decreased CH4 production by >20%, compared to the corresponding controls: stems of Vitex negundo var. incisa, stems of Amelanchier asiatica, fruit of Reynoutria sachalinensis, seeds of Tribulus terrestris, seeds of Pharbitis nil, leaves of Alnus japonica, stem and bark of Carpinus tschonoskii, and stems of Acer truncatum. A confirmation assay of the eight plant extracts at a dosage of 10 mg with four replications repeated on 3 different days revealed that the extracts decreased CH4 concentration in the total gas (7-15%) and total CH4 production (17-37%), compared to the control. This is the first report to identify the anti-methanogenic activities of eight potential plant extracts. All extracts decreased ammonia (NH3-N) concentrations. Negative effects on total gas and volatile fatty acid (VFA) production were also noted for all extracts that were rich in hydrolysable tannins and total saponins or fatty acids. The underlying modes of action differed among plants: extracts from P. nil, V. negundo var. incisa, A. asiatica, and R. sachalinensis resulted in a decrease in total methanogen or the protozoan population (p < 0.05) but extracts from other plants did not. Furthermore, extracts from P. nil decreased the population of total protozoa and increased the proportion of propionate among VFAs (p < 0.05). Identifying bioactive compounds in seeds of P. nil by gas chromatography-mass spectrometry analysis revealed enrichment of linoleic acid (18:2). Overall, seeds of P. nil could be a possible alternative to ionophores or oil seeds to mitigate ruminal CH4 production.

7.
Animals (Basel) ; 10(11)2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33182611

ABSTRACT

Greenhouse gas emissions and the carbon footprint (CF) were estimated in twelve Spanish dairy farms selected from three regions (Mediterranean, MED; Cantabric, CAN; and Central, CEN) using a partial life cycle assessment through the Integrated Farm System Model (IFSM). The functional unit was 1 kg of energy corrected milk (ECM). Methane emissions accounted for the largest contribution to the total greenhouse gas (GHG) emissions. The average CF (kg CO2-eq/kg of ECM) was 0.84, being the highest in MED (0.98), intermediate in CEN (0.84), and the lowest in CAN (0.67). Two extreme farms were selected for further simulations: one with the highest non-enteric methane (MED1), and another with the highest enteric methane (CAN2). Changes in management scenarios (increase milk production, change manure collection systems, change manure-type storage method, change bedding type and installation of an anaerobic digester) in MED1 were evaluated with the IFSM model. Changes in feeding strategies (reduce the forage: concentrate ratio, improve forage quality, use of ionophores) in CAN2 were evaluated with the Cornell Net Carbohydrate and Protein System model. Results indicate that changes in management (up to 27.5% reduction) were more efficient than changes in dietary practices (up to 3.5% reduction) in reducing the carbon footprint.

SELECTION OF CITATIONS
SEARCH DETAIL
...