Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Cells ; 13(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38334597

ABSTRACT

Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) utilizes angiotensin-converting enzyme 2 (ACE2) as its main receptor for cell entry. We bioengineered a soluble ACE2 protein termed ACE2 618-DDC-ABD that has increased binding to SARS-CoV-2 and prolonged duration of action. Here, we investigated the protective effect of this protein when administered intranasally to k18-hACE2 mice infected with the aggressive SARS-CoV-2 Delta variant. k18-hACE2 mice were infected with the SARS-CoV-2 Delta variant by inoculation of a lethal dose (2 × 104 PFU). ACE2 618-DDC-ABD (10 mg/kg) or PBS was administered intranasally six hours prior and 24 and 48 h post-viral inoculation. All animals in the PBS control group succumbed to the disease on day seven post-infection (0% survival), whereas, in contrast, there was only one casualty in the group that received ACE2 618-DDC-ABD (90% survival). Mice in the ACE2 618-DDC-ABD group had minimal disease as assessed using a clinical score and stable weight, and both brain and lung viral titers were markedly reduced. These findings demonstrate the efficacy of a bioengineered soluble ACE2 decoy with an extended duration of action in protecting against the aggressive Delta SARS-CoV-2 variant. Together with previous work, these findings underline the universal protective potential against current and future emerging SARS-CoV-2 variants.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Melphalan , gamma-Globulins , Humans , Mice , Animals , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2/metabolism
2.
mBio ; 15(2): e0285223, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38174934

ABSTRACT

Septal membranes of Staphylococcus aureus serve as the site of secretion for precursors endowed with the YSIRK motif. Depletion of ltaS, a gene required for lipoteichoic acid (LTA) synthesis, results in the loss of restricted trafficking of YSIRK precursors to septal membranes. Here, we seek to understand the mechanism that ties LTA assembly and trafficking of YSIRK precursors. We confirm that catalytically inactive lipoteichoic acid synthase (LtaS)T300A does not support YSIRK precursor trafficking to septa. We hypothesize that the enzyme's reactants [gentiobiosyldiacylglycerol (Glc2-DAG) and phosphatidylglycerol (PG)] or products [LTA and diacylglycerol (DAG)], not LtaS, must drive this process. Indeed, we observe that septal secretion of the staphylococcal protein A YSIRK precursor is lost in ypfP and ltaA mutants that produce glycerophosphate polymers [poly(Gro-P)] without the Glc2-DAG lipid anchor. These mutants display longer poly(Gro-P) chains, implying enhanced PG consumption and DAG production. Our experiments also reveal that in the absence of Glc2-DAG, the processing of LtaS to the extracellular catalytic domain, eLtaS, is impaired. Conversely, LTA polymerization is delayed in a strain producing LtaSS218P, a variant processed more slowly than LtaS. We conclude that Glc2-DAG binding to the enzyme couples catalysis by LtaS and the physical release of eLtaS. We propose a model for the temporal and localized assembly of LTA into cross-walls. When LtaS is not processed in a timely manner, eLtaS no longer diffuses upon daughter cell splitting, LTA assembly continues, and the unique septal-lipid pool, PG over DAG ratio, is not established. This results in profound physiological changes in S. aureus cells, including the inability to restrict the secretion of YSIRK precursors at septal membranes.IMPORTANCEIn Staphylococcus aureus, peptidoglycan is assembled at the septum. Dedicated cell division proteins coordinate septal formation and the fission of daughter cells. Lipoteichoic acid (LTA) assembly and trafficking of preproteins with a YSIRK motif also occur at the septum. This begs the question as to whether cell division components also recruit these two pathways. This study shows that the processing of lipoteichoic acid synthase (LtaS) to extracellular LtaS by signal peptidase is regulated by gentiobiosyldiacylglycerol (Glc2-DAG), the priming substrate for LTA assembly. A model is proposed whereby a key substrate controls the temporal and spatial activity of an enzyme. In turn, this mechanism enables the establishment of a unique and transient lipid pool that defines septal membranes as a targeting site for the secretion of YSIRK preproteins.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Humans , Staphylococcus aureus/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Lipopolysaccharides/metabolism , Teichoic Acids/metabolism , Nitric Oxide Synthase/metabolism
3.
Int J Nanomedicine ; 18: 5591-5606, 2023.
Article in English | MEDLINE | ID: mdl-37808455

ABSTRACT

Background: Loss of normal function is an inevitable effect of aging. Several factors contribute to the aging process, including cellular senescence and oxidative stress. Methods: We investigate how Arthrospira platensis Nanoparticles (NSP) protect against aging injury induced by d-galactose (D-gal) in the rat. So, we subcutaneously (S/C) injected D-gal at 200 mg/kg BW to see if Arthrospira platensis Nanoparticles (NSP) might protect against the oxidative changes generated by D-gal. NSP (0.5 mg/kg body weight once daily by gastric gavage) was given to all groups apart from the control and D-gal groups. The d-gal + NSP group was supplemented with 200 mg of D-gal per kg BW once a day and NSP 0.5 mg/kg BW given orally for 45 days. Biochemical, mRNA expression, and histological investigations of brain tissues were used to evaluate the oxidative alterations caused by d-gal and the protective role of NSP. Results: Our data demonstrated that d-gal was causing significant reductions in relative brain and body weight with increased malondialdehyde (MDA) and redox oxygen species (ROS) levels and increases in serum creatine phosphokinase (CPK) and creatine phosphokinase isoenzyme BB (CPK-BB) with marked decreases in the level of antioxidant enzyme activity in the brain and acetylcholinesterase activity augmented with a phosphorylated H2A histone family member X (γ-H2AX) level increased. The D-gal group had considerably higher phosphorylated p38 mitogen-activated protein kinases (P38MAPK) and C-Jun N-terminal (JNK) kinases. The d-gal administration stimulates the apoptotic gene expression by downregulating the brain superoxide dismutase (SOD), catalase (CAT), and nuclear factor erythroid 2-related factor 2 (Nrf2). The NSP administration saved these parameters in the direction of the control. The brain histopathologic and immunohistochemistry analysis findings support our findings on NSP's protective role. Conclusion: The NSP may be a promising natural protective compound that can prevent aging and preserve health.


Subject(s)
Antioxidants , Galactose , Rats , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Acetylcholinesterase/metabolism , Aging , Oxidative Stress , Anti-Inflammatory Agents/pharmacology , Brain/metabolism , Oxidation-Reduction , Body Weight , Creatine Kinase/metabolism
4.
bioRxiv ; 2023 Sep 03.
Article in English | MEDLINE | ID: mdl-37886572

ABSTRACT

The spherical bacterium Staphylococcus aureus, a leading cause of nosocomial infections, undergoes binary fission by dividing in two alternating orthogonal planes, but the mechanism by which S. aureus correctly selects the next cell division plane is not known. To identify cell division placement factors, we performed a chemical genetic screen that revealed a gene which we termed pcdA. We show that PcdA is a member of the McrB family of AAA+ NTPases that has undergone structural changes and a concomitant functional shift from a restriction enzyme subunit to an early cell division protein. PcdA directly interacts with the tubulin-like central divisome component FtsZ and localizes to future cell division sites before membrane invagination initiates. This parallels the action of another McrB family protein, CTTNBP2, which stabilizes microtubules in animals. We show that PcdA also interacts with the structural protein DivIVA and propose that the DivIVA/PcdA complex recruits unpolymerized FtsZ to assemble along the proper cell division plane. Deletion of pcdA conferred abnormal, non-orthogonal division plane selection, increased sensitivity to cell wall-targeting antibiotics, and reduced virulence in a murine infection model. Targeting PcdA could therefore highlight a treatment strategy for combatting antibiotic-resistant strains of S. aureus.

5.
ACS Omega ; 8(33): 30630-30639, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37636931

ABSTRACT

Phytochemical study of the ethyl acetate root extract of Zygophyllum album has resulted in the isolation of a new saponin, Zygo-albuside D (1), along with two known compounds; (3-O-[ß-D-quinovopyranosyl]-quinovic acid) (2), which is first reported in the root, and catechin (3), first reported in the genus. Their chemical structures were established by NMR and high-resolution mass spectrometry (HRMS). The new saponin (1) exhibited promising cytotoxicity with IC50 values of 3.5 and 5.52 µM on A549 and PC-3 cancer cell lines, respectively, compared to doxorubicin with IC50 values of 9.44 and 11.39 µM on A549 and PC-3 cancer cell lines, respectively. While it had an IC50 value of 46.8 µM against WISH cells. Investigating apoptosis-induction, compound 1 induced total apoptotic cell death in A549 lung cancer cells by 32-fold; 21.53% compared to 0.67% in the untreated control cells. Finally, it upregulated the pro-apoptotic genes and downregulated the antiapoptotic gene using gene expression levels. Compound 1 exhibited remarkable CDK-2 target inhibition by 96.2% with an IC50 value of 117.6 nM compared to Roscovitine. The molecular docking study further confirmed the binding affinity of compound 1 as CDK2 and Bcl2 inhibitors that led to apoptosis induction in A549 cancer cells. Hence, this study highlights the importance of compound 1 in the design of a new anticancer agent with specific mechanisms.

6.
Sci Rep ; 13(1): 9579, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37311791

ABSTRACT

The present study aims to develop a novel nanocombination with high selectivity against several invasive cancer cells, sparing normal cells and tissues. Bovine lactoferrin (bLF) has recently captured the interest of numerous medical fields owing to its biological activities and well-known immunomodulatory effects. BLF is an ideal protein to be encapsulated or adsorbed into selenium nanocomposites (Se NPs) in order to produce stable nanocombinations with potent anticancer effects and improved immunological functions. The biosynthesis of the functionalized Se NPs was achieved using Rhodotorula sp. strain MZ312359 via a simultaneous bio-reduction approach to selenium sodium salts. The physicochemical properties of Se NPs using SEM, TEM, FTIR, UV Vis, XRD, and EDX confirmed the formation of uniform agglomerated spheres with a size of 18-40 nm. Se NPs were successfully embedded in apo-LF (ALF), forming a novel nanocombination of ALF-Se NPs with a spherical shape and an average nanosize of less than 200 nm. The developed ALF-Se NPs significantly displayed an effective anti-proliferation efficiency against many cancer cells, including MCF-7, HepG-2, and Caco-2 cell lines, as compared to Se NPs and ALF in free forms. ALF-Se NPs showed a significant selectivity impact (> 64) against all treated cancer cells at IC50 63.10 ≤ µg/mL, as well as the strongest upregulation of p53 and suppression of Bcl-2, MMP-9, and VEGF genes. Besides, ALF-Se NPs were able to show the maximum activation of transcrition of key redox mediator (Nrf2) with suppression in reactive oxygen species (ROS) levels inside all treated cancer cells. This study demonstrates that this novel nanocombination of ALF-Se NPs has superior selectivity and apoptosis-mediating anticancer activity over free ALF or individual form of Se NPs.


Subject(s)
Nanoparticles , Neoplasms , Selenium , Humans , Selenium/pharmacology , Lactoferrin/pharmacology , Caco-2 Cells , Apoptosis
7.
Cannabis Cannabinoid Res ; 8(5): 899-910, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36322895

ABSTRACT

Background: Cannabis has a long history of being credited with centuries of healing powers for millennia. The cannabis plant is a rich source of cannabinoids and terpenes. Each cannabis chemovar exhibits a different flavor and aroma, which are determined by its terpene content. Methods: In this study, a gas chromatography-flame ionization detector method was developed and validated for the determination of the 10 major terpenes in the main three chemovars of Cannabis sativa L. with n-tridecane used as the internal standard following the standard addition method. The 10 major terpenes (monoterpenes and sesquiterpenes) are α-pinene, ß-pinene, ß-myrcene, limonene, terpinolene, linalool, α-terpineol, ß-caryophyllene, α-humulene, and caryophyllene oxide. The method was validated according to Association of Official Analytical Chemists guidelines. Spike recovery studies for all terpenes were carried out on placebo cannabis material and indoor-growing high THC chemovar with authentic standards. Results: The method was linear over the calibration range of 1-100 µg/mL with r2>0.99 for all terpenes. The limit of detection and limit of quantification were calculated to be 0.3 and 1.0 µg/mL, respectively, for all terpenes. The accuracy (%recovery) at all levels ranged from 89% to 104% and 90% to 111% for placebo and indoor-growing high THC chemovar, respectively. The repeatability and intermediate precision of the method were evaluated by the quantification of target terpenes in the three different C. sativa chemovars, resulting in acceptable relative standard deviations (less than 10%). Conclusions: The developed method is simple, sensitive, reproducible, and suitable for the detection and quantification of monoterpenes and sesquiterpenes in C. sativa biomass.

8.
Pharmaceuticals (Basel) ; 15(12)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36559006

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting the substantia nigra where functions controlling body movement take place. Manganese (Mn) overexposure is linked to a neurologic syndrome resembling PD. Sesamol, thymol, wheat grass (WG), and coenzyme Q10 (CoQ10) are potent antioxidants, anti-inflammatory, and anti-apoptotic nutraceuticals. We investigated the potential protective effects of these nutraceuticals alone or in combinations against MnCl2-induced PD in rats. Seven groups of adult male Sprague Dawley rats were categorized as follows: group (I) was the control, while groups 2-7 received MnCl2 either alone (Group II) or in conjunction with oral doses of sesamol (Group III), thymol (Group IV), CoQ10 (Group V), WG (Group VI), or their combination (Group VII). All rats were subjected to four behavioral tests (open-field, swimming, Y-maze, and catalepsy tests). Biochemical changes in brain levels of monoamines, ACHE, BDNF, GSK-3ß, GABA/glutamate, as well as oxidative stress, and apoptotic and neuroinflammatory biomarkers were evaluated, together with histopathological examinations of different brain regions. Mn increased catalepsy scores, while decreasing neuromuscular co-ordination, and locomotor and exploratory activity. It also impaired vigilance, spatial memory, and decision making. Most behavioral impairments induced by Mn were improved by sesamol, thymol, WG, or CoQ10, with prominent effect by sesamol and thymol. Notably, the combination group showed more pronounced improvements, which were confirmed by biochemical, molecular, as well as histopathological findings. Sesamol or thymol showed better protection against neuronal degeneration and some behavioral impairments induced by Mn than WG or CoQ10, partly via interplay between Nrf2/HO-1, TLR4/NLRP3/NF-κB, GSK-3ß and Bax/Bcl2 pathways.

9.
Pharmaceuticals (Basel) ; 15(11)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36355507

ABSTRACT

The current work demonstrates a comparative study between aerial and root parts of Zygophyllum album L. The total phenolic (TPC) and flavonoid content (TFC), in addition to the antioxidant activity, of the crude extracts were investigated, where the aerial parts revealed a higher value overall. By means of UV-VIS and HPLC, rutin and caffeic acid were detected and then quantified as 5.91 and 0.97 mg/g of the plant extract, respectively. Moreover, the biosynthesis of AgNPs utilizing the crude extract of the arial parts and root of Z. album L. and the phenolic extracts was achieved in an attempt to enhance the cytotoxicity of the different plant extracts. The prepared AgNPs formulations were characterized by TEM and zeta potential measurements, which revealed that all of the formulated AgNPs were of a small particle diameter and were highly stable. The mean hydrodynamic particle size ranged from 67.11 to 80.04 nm, while the zeta potential ranged from 29.1 to 38.6 mV. Upon biosynthesis of the AgNPs using the extracts, the cytotoxicity of the tested samples was improved, so the polyphenolics AgNPs of the aerial parts exhibited a potent cytotoxicity against lung A549 and prostate PC-3 cancer cells with IC50 values of 6.1 and 4.36 µg/mL, respectively, compared with Doxorubicin (IC50 values of 6.19 and 5.13 µg/mL, respectively). Regarding the apoptotic activity, polyphenolics AgNPs of the aerial parts induced apoptotic cell death by 4.2-fold in PC-3 and 4.7-fold in A549 cells compared with the untreated control. The mechanism of apoptosis in both cancerous cells appeared to be via the upregulation proapoptotic genes; p53, Bax, caspase 3, 8, and 9, and the downregulation of antiapoptotic gene, Bcl-2. Hence, this formula may serve as a good source for anticancer agents against PC-3 and A549 cells.

10.
Int J Mol Sci ; 23(18)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36142712

ABSTRACT

Chemical investigation of the crude extract of the aerial part of Zygophyllum album L. (Z. album) led to the isolation of a new saponin, Zygo-albuside A (7), together with seven known compounds, one of them (caffeic acid, compound 4) is reported in the genus for the first time. NMR (1D and 2D) and mass spectrometric analysis, including high-resolution mass spectrometry (HRMS), were utilized to set up the chemical structures of these compounds. The present biological study aimed to investigate the protective antioxidant, anti-inflammatory, and antiapoptotic activities of the crude extract from the aerial part of Z. album and two of its isolated compounds, rutin and the new saponin zygo-albuside A, against methotrexate (MTX)-induced testicular injury, considering the role of miRNA-29a. In all groups except for the normal control group, which received a mixture of distilled water and DMSO (2:1) as vehicle orally every day for ten days, testicular damage was induced on the fifth day by intraperitoneal administration of MTX at a single dose of 20 mg/kg. Histopathological examination showed that pre-treatment with the crude extract of Z. album, zygo-albuside A, or rutin reversed the testicular damage induced by MTX. In addition, biochemical analysis in the protected groups showed a decrease in malondialdehyde (MDA), interleukin-6 (IL-6) and IL-1ß, Bcl-2-associated-protein (Bax), and an increase in B-cell lymphoma 2 (Bcl-2) protein, catalase (CAT), superoxide dismutase (SOD) in the testis, along with an increase in serum testosterone levels compared with the unprotected (positive control) group. The mRNA expression levels of nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), p53, and miRNA-29a were downregulated in the testicular tissues of the protected groups compared with the unprotected group. In conclusion, the study provides sufficient evidence that Z. album extract, and its isolated compounds, zygo-albuside A and rutin, could alleviate testicular damage caused by the chemotherapeutic agent MTX.


Subject(s)
MicroRNAs , Saponins , Zygophyllum , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Catalase/metabolism , Dimethyl Sulfoxide/pharmacology , Interleukin-6/metabolism , Malondialdehyde/metabolism , Methotrexate/pharmacology , MicroRNAs/metabolism , NF-kappa B/metabolism , Oxidative Stress , Plant Extracts/chemistry , RNA, Messenger/metabolism , Rutin/metabolism , Rutin/pharmacology , Saponins/metabolism , Saponins/pharmacology , Superoxide Dismutase/metabolism , Testis/metabolism , Testosterone/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Suppressor Protein p53/metabolism , Water/metabolism , bcl-2-Associated X Protein/metabolism
11.
Toxins (Basel) ; 14(9)2022 09 01.
Article in English | MEDLINE | ID: mdl-36136543

ABSTRACT

Aflatoxin B1 (AF) is an unavoidable environmental pollutant that contaminates food, feed, and grains, which seriously threatens human and animal health. Arabic gum (AG) has recently evoked much attention owing to its promising therapeutic potential. Thus, the current study was conducted to look into the possible mechanisms beyond the ameliorative activity of AG against AF-inflicted hepatic injury. Male Wistar rats were assigned into four groups: Control, AG (7.5 g/kg b.w/day, orally), AF (200 µg/kg b.w), and AG plus AF group. AF induced marked liver damage expounded by considerable changes in biochemical profile and histological architecture. The oxidative stress stimulated by AF boosted the production of plasma malondialdehyde (MDA) level along with decreases in the total antioxidant capacity (TAC) level and glutathione peroxidase (GPx) activity. Additionally, AF exposure was associated with down-regulation of the nuclear factor erythroid2-related factor2 (Nrf2) and superoxide dismutase1 (SOD1) protein expression in liver tissue. Apoptotic cascade has also been evoked following AF-exposure, as depicted in overexpression of cytochrome c (Cyto c), cleaved Caspase3 (Cl. Casp3), along with enhanced up-regulation of inflammatory mediators such as tumor necrosis factor-α (TNF-α), interleukin (IL)-6, inducible nitric oxide synthase (iNOS), and nuclear factor kappa-B transcription factor/p65 (NF-κB/p65) mRNA expression levels. Interestingly, the antioxidant and anti-inflammatory contents of AG may reverse the induced oxidative damage, inflammation, and apoptosis in AF-exposed animals.


Subject(s)
Environmental Pollutants , NF-E2-Related Factor 2 , Aflatoxin B1/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Caspase 3/metabolism , Cytochromes c/metabolism , Cytochromes c/pharmacology , Environmental Pollutants/metabolism , Glutathione Peroxidase/metabolism , Inflammation Mediators/metabolism , Interleukins/metabolism , Liver/metabolism , Male , Malondialdehyde/metabolism , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/metabolism , Oxidative Stress , RNA, Messenger/metabolism , Rats , Rats, Wistar , Superoxide Dismutase-1/metabolism , Superoxides/metabolism , Tumor Necrosis Factor-alpha/metabolism
12.
Front Pharmacol ; 13: 954030, 2022.
Article in English | MEDLINE | ID: mdl-36003506

ABSTRACT

Cadmium (Cd) is a hazardous environmental pollutant that menaces human and animal health and induces serious adverse effects in various organs, particularly the liver and kidneys. Thus, the current study was designed to look into the possible mechanisms behind the ameliorative activities of Tamarindus indica (TM) and coenzyme Q10 (CoQ) combined therapy toward Cd-inflicted tissue injury. Male Wistar rats were categorized into seven groups: Control (received saline only); TM (50 mg/kg); CoQ (40 mg/kg); Cd (2 mg/kg); (Cd + TM); (Cd + CoQ); and (Cd + TM + CoQ). All the treatments were employed once daily via oral gavage for 28 consecutive days. The results revealed that Cd exposure considerably induced liver and kidney damage, evidenced by enhancement of liver and kidney function tests. In addition, Cd intoxication could provoke oxidative stress evidenced by markedly decreased glutathione (GSH) content and catalase (CAT) activity alongside a substantial increase in malondialdehyde (MDA) concentrations in the hepatic and renal tissues. Besides, disrupted protein and lipid metabolism were noticed. Unambiguously, TM or CoQ supplementation alleviated Cd-induced hepatorenal damage, which is most likely attributed to their antioxidant and anti-inflammatory contents. Interestingly, when TM and CoQ were given in combination, a better restoration of Cd-induced liver and kidney damage was noticed than was during their individual treatments.

13.
Biomedicines ; 10(8)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36009533

ABSTRACT

Cichorium endivia L. (Asteraceae) is a wide edible plant that grows in the Mediterranean region. In this study, a phytochemical investigation of C. endivia L. ethanolic extract led to the isolation of stigmasterol (1), ursolic acid (2), ß-amyrin (3), azelaic acid (4), vanillic acid (5), (6S, 7E)-6-hydroxy-4,7-megastigmadien-3,9-dione (S(+)-dehydrovomifoliol) (6), 4-hydroxy phenyl acetic acid (7), vomifoliol (8), ferulic acid (9), protocatechuic acid (10), kaempferol (11), p. coumaric acid (12), and luteolin (13). In addition, the total phenolic content as well as the in vitro antioxidant activity of C. endivia L. extract were estimated. Moreover, we inspected the potential gonado-protective effect of C. endivia crude extract, its phenolic fraction, and the isolated coumaric, vanillic, and ferulic acids against methotrexate (MTX)-induced testicular injury in mice. There were seven groups: normal control, MTX control, MTX + C. endivia crude extract, MTX + C. endivia phenolic fraction, MTX + isolated coumaric acid, MTX + isolated vanillic acid, and MTX + isolated ferulic acid. MTX was given by i.p. injection of a 20 mg/kg single dose. The crude extract and phenolic fraction were given with a dose of 100 mg/kg/day, whereas the compounds were given at a dose of 10 mg/kg/day. A histopathological examination was done. The testosterone level was detected in serum together with the testicular content of malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), interleukin 1ß (IL-1ß), IL-6, tumor necrosis factor alpha (TNF-α), nuclear factor kappa B (NF-κB), B-cell lymphoma 2 (Bcl-2), Bcl-2 associated x protein (Bax), p53, and miR-29a. C. endivia crude extract, the phenolic fraction, and the isolated compounds showed significant elevation in their levels of testosterone, CAT, SOD, Bcl-2 with a significant decrease in their levels of MDA, TNF-α, IL-1ß, IL-6, NF-κB, Bax, P53, and miR-29a compared to those of the MTX control group. In conclusion, C. endivia mitigated MTX-induced germ cell toxicity via anti-inflammatory, antioxidant, and antiapoptotic effects.

14.
Int J Pediatr Adolesc Med ; 9(2): 136-142, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35663790

ABSTRACT

Background and Objective: Coronavirus disease (COVID-19) is milder with favorable outcomes in children than in adults. However, detailed data regarding COVID-19 in children from Saudi Arabia are scarce. This study aimed to describe COVID-19 among children in Al-Madinah, Saudi Arabia. Methods: This retrospective observational study included children <14 years old hospitalized with COVID-19 between May 1, 2020 and July 31, 2020. Clinical data, COVID-19 disease severity, and outcomes were collected. The total number of presenting symptoms and signs were computed by counting those recorded upon presentation. The Kruskal-Wallis non-parametric test was used to compare the number of symptoms and signs across all levels of COVID-19 severity. Result: Overall, 106 patients met the inclusion criteria; their ages ranged from 2 weeks to 13 years. Most patients were ≤12 months of age (43.4%). Bronchial asthma was the most common comorbidity (9.4%). Among 99 symptomatic patients, fever was the most common symptom (84.8%); seven patients (7%) were diagnosed with febrile seizure. Most COVID-19 cases were mild (84%); one patient (0.94%) was in critical condition and one patient (0.94%) met the Multisystem Inflammatory Syndrome in children criteria. The mean number of symptoms and signs in children with severe or critical COVID-19 was significantly higher than that in children with mild cases or non-severe pneumonia (P < .001). One patient died owing to COVID-19 (0.94%). Conclusions: COVID-19 mortality in children is rare; however, while most children exhibit mild disease with favorable outcomes, children with chronic lung disease may be at higher risk for severe disease.

15.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35745655

ABSTRACT

Although the combination of antibiotics is generally well-tolerated, they may have nephrotoxic effects. This study investigated whether tigecycline (TG) and gentamicin (GM) co-administration could accelerate renal damage. Male Wistar rats were randomly divided into six experimental groups: the control, TG7 (tigecycline, 7 mg/kg), TG14 (tigecycline, 14 mg/kg), GM (gentamicin, 80 mg/kg), TG7+GM, and TG14+GM groups. The combination of TG and GM evoked renal damage seen by the disruption of kidney function tests. The perturbation of renal tissue was mainly confounded to the TG and GM-induced oxidative damage, which was exhibited by marked increases in renal MDA (malondialdehyde) along with a drastic reduction in GSH (reduced-glutathione) content and CAT (catalase) activity compared to their individual treatments. More obvious apoptotic events and inflammation were also revealed by elevating the annexin-V and interleukin-6 (IL-6) levels, aside from the upregulation of renal PCNA (proliferating cell nuclear antigen) expression in the TG and GM concurrent treatment. The principal component analysis indicated that creatinine, urea, annexin-V, IL-6, and MDA all played a role in discriminating the TG and GM combined toxicity. Oxidative stress, inflammatory response, and apoptosis were the key mechanisms involved in this potentiated toxicity.

16.
J Med Life ; 15(3): 350-358, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35449996

ABSTRACT

COVID-19 is a pandemic disease caused by SARS-CoV-2, which is an RNA virus similar to the hepatitis C virus (HCV) in the replication process. Sofosbuvir/ledipasvir is an approved drug to treat HCV infection. This study investigates the efficacy of Sofosbuvir/ledipasvir as a treatment for patients with moderate COVID-19 infection. This is a single-blinded parallel-randomized controlled trial. The participants were randomized equally into the intervention group that received Sofosbuvir/ledipasvir (S.L. group), and the control group received Oseltamivir, Hydroxychloroquine, and Azithromycin (OCH group). The primary outcomes were the cure rate over time and the incidence of serious adverse events. The secondary outcomes included the laboratory findings. 250 patients were divided equally into each group. Both groups were similar regarding gender, but age was higher in the S.L. group (p=0.001). In the S.L. group, 89 (71.2%) patients were cured, while only 51 (40.8%) patients were cured in the OCH group. The cure rate was significantly higher in the S.L. group (RR=1.75, p<0.001). Kaplan-Meir plot showed a considerably higher cure over time in the S.L. group (Log-rank test, p=0.032). There were no deaths in the S.L. group, but there were six deaths (4.8%) in the OCH group (RR=0.08, p=0.013). Seven patients (5.6%) in the S.L. group and six patients (4.8%) in the OCH group were admitted to the intensive care unit (ICU) (RR=1.17, P=0.776). There were no significant differences between treatment groups regarding total leukocyte and neutrophils count, lymph, and urea. Sofosbuvir/ledipasvir is suggestive of being effective in treating patients with moderate COVID-19 infection. Further studies are needed to compare Sofosbuvir/ledipasvir with new treatment protocols.


Subject(s)
COVID-19 Drug Treatment , Hepatitis C, Chronic , Hepatitis C , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Benzimidazoles , Drug Therapy, Combination , Egypt , Fluorenes , Genotype , Hepacivirus , Hepatitis C, Chronic/drug therapy , Humans , Ribavirin/adverse effects , SARS-CoV-2 , Sofosbuvir/pharmacology , Sofosbuvir/therapeutic use , Treatment Outcome , Uridine Monophosphate/adverse effects
17.
Front Genet ; 13: 785570, 2022.
Article in English | MEDLINE | ID: mdl-35309130

ABSTRACT

Background: Congenital adrenal hyperplasia (CAH) is a monogenic disorder caused by genetic diversity in the CYP21A2 gene, with 21-hydroxylase deficiency (21-OHD) as the most common type. Early sex assignment and early diagnosis of different genetic variations with a proper technique are important to reduce mortality and morbidity. Proper early sex identification reduces emotional, social, and psychological stress. Aim: Detection of a spectrum of aberrations in the CYP21A2 gene, including copy number variations, gene conversion, chimeric genes, and point variations. Methods: The CYP21A2 gene was screened using MLPA assay in 112 unrelated Egyptian children with 21-OHD CAH (33 males and 79 females). Results: In the studied group, 79.5% were diagnosed within the first month of life. 46.8% of the genetic females were misdiagnosed as males. Among the copy number variation results, large deletions in 15.4% and three types of chimeric genes in 9% (CH-1, CH-7, and CAH-X CH-1) were detected. Regarding gene dosage, one copy of CYP21A2 was found in 5 cases (4.5%), three copies were detected in 7 cases (6.3%), and one case (0.9%) showed four copies. Eight common genetic variants were identified, I2G, large deletions, large gene conversion (LGC), I172N, F306 + T, -113 SNP, 8bp Del, and exon 6 cluster (V237E and M239K) with an allelic frequency of 32.62%, 15.45%, 7.30%, 3.00%, 2.58%, 2.15%, 0.86%, and 0.86%, respectively. Conclusion: High prevalence of copy number variations highlights the added value of using MLPA in routine laboratory diagnosis of CAH patients.

18.
BMC Pediatr ; 22(1): 86, 2022 02 12.
Article in English | MEDLINE | ID: mdl-35151286

ABSTRACT

BACKGROUND: The Coronavirus Disease 2019 (COVID-19) has affected over 100 million cases worldwide. Children accounted for 1-5% of all cases with less reported symptoms and better prognosis compared to adults. This study aimed to describe the epidemiological characteristics and outcomes of pediatric COVID-19 cases in Saudi Arabia in addition to identifying risk factors associated with disease severity. METHODS: This was a multicenter, cross-sectional retrospective study that included confirmed SARS-CoV-2 infection among pediatric patients (< 14 years) from the time of initial identification in March 2020 to the end of July 2020 in 6 centers across the country. Patients were classified based on clinical severity. Study outcomes included time to recovery, need for invasive ventilation, and mortality. Multivariate logistic regression analysis was conducted to explore factors associated with increased disease severity. RESULTS: The study enrolled 567 children with (51.5%) were males, and (44.6%) aged from 6 to 14 years old. Asymptomatic patients accounted for 38.98% of the cases: while 319 patients (56%) had mild disease, and 27 patients (4.76%) had moderate-to-severe disease. Only 10 patients (1.76%) required Pediatric Intensive Care Unit admission. The calculated case-fatality was 0.7%. After performing multivariate regression analysis, chronic lung conditions [adjusted OR = 12.73, 95% CI (2.05-79.12)] and decreased red blood cells (RBCs) count [adjusted OR = 2.43, 95% CI (1.09-5.41] were found to be significant predictors for moderate-to-severe disease (p = 0.006 and 0.030, respectively). CONCLUSION: Most COVID-19 cases in the current study had a benign course of illness and carried an excellent prognosis. Children with chronic lung conditions or low RBCs count are at higher risk to develop moderate-to-severe COVID-19 disease.


Subject(s)
COVID-19 , Adolescent , Child , Cross-Sectional Studies , Humans , Male , Retrospective Studies , Risk Factors , SARS-CoV-2 , Saudi Arabia/epidemiology
19.
Mar Drugs ; 20(1)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35049918

ABSTRACT

Different classes of phytochemicals were previously isolated from the Red Sea algae Hypnea musciformis as sterols, ketosteroids, fatty acids, and terpenoids. Herein, we report the isolation of three fatty acids-docosanoic acid 4, hexadecenoic acid 5, and alpha hydroxy octadecanoic acid 6-as well as three ceramides-A (1), B (2), and C (3)-with 9-methyl-sphinga-4,8-dienes and phytosphingosine bases. Additionally, different phytochemicals were determined using the liquid chromatography coupled with electrospray ionization high-resolution mass spectrometry (LC-ESI-HRMS) technique. Ceramides A (1) and B (2) exhibited promising in vitro cytotoxic activity against the human breast adenocarcinoma (MCF-7) cell line when compared with doxorubicin as a positive control. Further in vivo study and biochemical estimation in a mouse model of Ehrlich ascites carcinoma (EAC) revealed that both ceramides A (1) and B (2) at doses of 1 and 2 mg/kg, respectively, significantly decreased the tumor size in mice inoculated with EAC cells. The higher dose (2 mg/kg) of ceramide B (2) particularly expressed the most pronounced decrease in serum levels of vascular endothelial growth factor -B (VEGF-B) and tumor necrosis factor-α (TNF-α) markers, as well as the expression levels of the growth factor midkine in tumor tissue relative to the EAC control group. The highest expression of apoptotic factors, p53, Bax, and caspase 3 was observed in the same group that received 2 mg/kg of ceramide B (2). Molecular docking simulations suggested that ceramides A (1) and B (2) could bind in the deep grove between the H2 helix and the Ser240-P250 loop of p53, preventing its interaction with MDM2 and leading to its accumulation. In conclusion, this study reports the cytotoxic, apoptotic, and antiangiogenic effects of ceramides isolated from the Red Sea algae Hypnea musciformis in an experimental model of EAC.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Ehrlich Tumor/drug therapy , Ceramides/pharmacology , Rhodophyta , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Aquatic Organisms , Ascites/pathology , Carcinoma, Ehrlich Tumor/pathology , Cell Line, Tumor/drug effects , Ceramides/chemistry , Ceramides/therapeutic use , Disease Models, Animal , Humans , Indian Ocean , Inhibitory Concentration 50 , Mice , Molecular Docking Simulation
20.
Biology (Basel) ; 11(1)2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35053074

ABSTRACT

Methyl orange (MO) is categorized among the recalcitrant and refractory xenobiotics, representing a significant burden in the ecosystem. To clean-up the surrounding environment, advances in microbial degradation have been made. The main objective of this study was to investigate the extent to which an autochthonous consortium immobilized in alginate beads can promote an efficient biodegradation of MO. By employing response surface methodology (RSM), a parametric model explained the interaction of immobilized consortium (Raoultella planticola, Ochrobactrum thiophenivorans, Bacillus flexus and Staphylococcus xylosus) to assimilate 200 mg/L of MO in the presence of 40 g/L of NaCl within 120 h. Physicochemical analysis, including UV-Vis spectroscopy and FTIR, and monitoring of the degrading enzymes (azoreductase, DCIP reductase, NADH reductase, laccase, LiP, MnP, nitrate reductase and tyrosinase) were used to evaluate MO degradation. In addition, the toxicity of MO-degradation products was investigated by means of phytotoxicity and cytotoxicity. Chlorella vulgaris retained its photosynthetic performance (>78%), as shown by the contents of chlorophyll-a, chlorophyll-b and carotenoids. The viability of normal lung and kidney cell lines was recorded to be 90.63% and 99.23%, respectively, upon exposure to MO-metabolic outcomes. These results reflect the non-toxicity of treated samples, implying their utilization in ferti-irrigation applications and industrial cooling systems. Moreover, the immobilized consortium was employed in the bioremediation of MO from artificially contaminated agricultural and industrial effluents, in augmented and non-augmented systems. Bacterial consortium remediated MO by 155 and 128.5 mg/L in augmented systems of agricultural and industrial effluents, respectively, within 144 h, revealing its mutual synergistic interaction with both indigenous microbiotas despite differences in their chemical, physical and microbial contents. These promising results encourage the application of immobilized consortium in bioaugmentation studies using different resources.

SELECTION OF CITATIONS
SEARCH DETAIL