Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Metabolites ; 12(11)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36422242

ABSTRACT

Lake Mariout is Egypt's degraded coastal marine habitat that encompasses a variety of wastes. The biodiversity and hard environmental conditions allow the co-existence of organisms with high resistance and rich metabolism, making them potential candidates for screening and isolating novel microbial strains. A bacterial isolate (BF202) cultured from the marine sediments of Alexandria's Mariout Lake (Egypt) was tested for its antimicrobial and anticancer potential. The phylogenetic analysis of the isolated strain's 16S rDNA and gyrB revealed that BF202 belongs to Brevibacillus laterosporus (B. laterosporus). Antibiosis of B. laterosporus was confirmed against microbial pathogens including Escherichia coli, Klebsiella pneumoniae, Salmonella typhi, and Staphylococcus aureus. The highest antibacterial activity was detected on glucose peptone medium after 18 h of incubation at 35 °C, and at pH of 7.0 in the presence of mannose and ammonium carbonate as carbon and nitrogen sources, respectively. The cytotoxicity of the methanolic extract against breast cancer (MCF-7) and normal Vero cell lines, using the MTT test, revealed IC50 values of 7.93 and 23.79 µg/mL, respectively. To identify apoptotic and necrotic cells, a flow cytometric analysis using annexin V-FITC/PI dual-labeling was utilized and recorded a higher number of necrotic cells compared to apoptotic ones. Similarly, the cell cycle S-phase arrest was reported. The LC-MS-MS investigation of B. laterosporus extract and the molecular networking database analysis demonstrated five strategic diketopiperazine compounds with antimicrobial and anticancer activities. Taken together, this research shows that the crude extract of B. laterosporus might be an effective agent against drug-resistant bacteria and malignant disorders due to its richness in diketopiperazines.

2.
Sensors (Basel) ; 21(16)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34450826

ABSTRACT

Precise and quick estimates of soil moisture content for the purpose of irrigation scheduling are fundamentally important. They can be accomplished through the continuous monitoring of moisture content in the root zone area, which can be accomplished through automatic soil moisture sensors. Commercial soil moisture sensors are still expensive to be used by famers, particularly in developing countries, such as Egypt. This research aimed to design and calibrate a locally manufactured low-cost soil moisture sensor attached to a smart monitoring unit operated by Solar Photo Voltaic Cells (SPVC). The designed sensor was evaluated on clay textured soils in both lab and controlled greenhouse environments. The calibration results demonstrated a strong correlation between sensor readings and soil volumetric water content (θV). Higher soil moisture content was associated with decreased sensor output voltage with an average determination coefficient (R2) of 0.967 and a root-mean-square error (RMSE) of 0.014. A sensor-to-sensor variability test was performed yielding a 0.045 coefficient of variation. The results obtained from the real conditions demonstrated that the monitoring system for real-time sensing of soil moisture and environmental conditions inside the greenhouse could be a robust, accurate, and cost-effective tool for irrigation management.


Subject(s)
Soil , Water , Water/analysis
3.
Anal Bioanal Chem ; 411(26): 6857-6866, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31420709

ABSTRACT

We show an alternative way to visualize time course NMR data without the application of multivariate data analysis, based on the temporal change of the metabolome of hazelnuts after mold infestation. Fresh hazelnuts were inoculated with eight different natural mold species and the growth was studied over a period of 14 days. The data were plotted in a color-coded scheme showing metabolic changes as a function of chemical shift, which we named signal pattern plot. This plot graphically displays alteration (trend) of a respected signal over time and allows visual interpretation in a simple manner. Changes are compared with a reference sample stored under identical conditions as the infected nuts. The plot allows, at a glance, the recognition of individual landmarks specific to a sample group as well as common features of the spectra. Each sample reveals an individual signal pattern. The plot facilitates the recognition of signals that belong to biological relevant metabolites. Betaine and five signals were identified that specifically changed upon mold infestation. Graphical abstract.


Subject(s)
Corylus/metabolism , Corylus/microbiology , Metabolome , Metabolomics/methods , Proton Magnetic Resonance Spectroscopy/methods , Aspergillus niger/physiology , Betaine/analysis , Betaine/metabolism , Corylus/chemistry , Fungi/physiology , Host-Pathogen Interactions , Plant Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...