Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteome Res ; 20(4): 1936-1942, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33661641

ABSTRACT

Bottom-up proteomics is currently the dominant strategy for proteome analysis. It relies critically upon the use of a protease to digest proteins into peptides, which are then identified by liquid chromatography-mass spectrometry (LC-MS). The choice of protease(s) has a substantial impact upon the utility of the bottom-up results obtained. Protease selection determines the nature of the peptides produced, which in turn affects the ability to infer the presence and quantities of the parent proteins and post-translational modifications in the sample. We present here the software tool ProteaseGuru, which provides in silico digestions by candidate proteases, allowing evaluation of their utility for bottom-up proteomic experiments. This information is useful for both studies focused on a single or small number of proteins, and for analysis of entire complex proteomes. ProteaseGuru provides a convenient user interface, valuable peptide information, and data visualizations enabling the comparison of digestion results of different proteases. The information provided includes data tables of theoretical peptide sequences and their biophysical properties, results summaries outlining the numbers of shared and unique peptides per protease, histograms facilitating the comparison of proteome-wide proteolytic data, protein-specific summaries, and sequence coverage maps. Examples are provided of its use to inform analysis of variant-containing proteins in the human proteome, as well as for studies requiring the use of multiple proteomic databases such as a human:mouse xenograft model, and microbiome metaproteomics.


Subject(s)
Peptide Hydrolases , Proteomics , Amino Acid Sequence , Animals , Chromatography, Liquid , Mice , Proteome/genetics
2.
J Proteome Res ; 20(4): 1826-1834, 2021 04 02.
Article in English | MEDLINE | ID: mdl-32967423

ABSTRACT

Proteoforms are the workhorses of the cell, and subtle differences between their amino acid sequences or post-translational modifications (PTMs) can change their biological function. To most effectively identify and quantify proteoforms in genetically diverse samples by mass spectrometry (MS), it is advantageous to search the MS data against a sample-specific protein database that is tailored to the sample being analyzed, in that it contains the correct amino acid sequences and relevant PTMs for that sample. To this end, we have developed Spritz (https://smith-chem-wisc.github.io/Spritz/), an open-source software tool for generating protein databases annotated with sequence variations and PTMs. We provide a simple graphical user interface for Windows and scripts that can be run on any operating system. Spritz automatically sets up and executes approximately 20 tools, which enable the construction of a proteogenomic database from only raw RNA sequencing data. Sequence variations that are discovered in RNA sequencing data upon comparison to the Ensembl reference genome are annotated on proteins in these databases, and PTM annotations are transferred from UniProt. Modifications can also be discovered and added to the database using bottom-up mass spectrometry data and global PTM discovery in MetaMorpheus. We demonstrate that such sample-specific databases allow the identification of variant peptides, modified variant peptides, and variant proteoforms by searching bottom-up and top-down proteomic data from the Jurkat human T lymphocyte cell line and demonstrate the identification of phosphorylated variant sites with phosphoproteomic data from the U2OS human osteosarcoma cell line.


Subject(s)
Proteogenomics , Databases, Protein , Humans , Mass Spectrometry , Protein Processing, Post-Translational , Proteomics , Software
SELECTION OF CITATIONS
SEARCH DETAIL