Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 13(45): 31908-31924, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37915441

ABSTRACT

Vascular endothelial growth factor receptor-2 is a vital target for therapeutic mediation in various types of cancer. This study was aimed at exploring the cytotoxic activity of seventeen novel quinoxaline-3-propanamides against colon cancer (HCT-116) and breast cancer (MCF-7) using MTT assay. Results revealed that compounds 8, 9, and 14 elicited higher cytotoxicity than the reference drugs, doxorubicin (DOX) and sorafenib. Interestingly, they are more selective for HCT-116 (SI 11.98-19.97) and MCF-7 (SI 12.44-23.87) compared to DOX (SI HCT-116 0.72 and MCF-7 0.9). These compounds effectively reduced vascular endothelial growth factor receptor-2; among them, compound 14 displayed similar VEGFR-2 inhibitory activity to sorafenib (IC50 0.076 M). The ability of 14 to inhibit angiogenesis was demonstrated by a reduction in VEGF-A level compared to control. Furthermore, it induced a significant increase in the percentage of cells at pre-G1 phase by almost 1.38 folds (which could be indicative of apoptosis) and an increase in G2/M by 3.59 folds compared to the control experiment. A flow cytometry assay revealed that compound 14 triggered apoptosis via the programmed cell death and necrotic pathways. Besides, it caused a remarkable increase in apoptotic markers, i.e., caspase-3 p53 and BAX. When compared to the control, significant increase in the expression levels of caspase-3 from 47.88 to 423.10 and p53 from 22.19 to 345.83 pg per ml in MCF-7 cells. As well, it increased the proapoptotic protein BAX by 4.3 times while lowering the antiapoptotic marker BCL2 by 0.45 fold. Docking studies further supported the mechanism, where compound 14 showed good binding to the essential amino acids in the active site of VEGFR-2. Pharmacokinetic properties showed the privilege of these hits over sunitinib: they are not substrates of P-gp protein; this suggests that they have less chance to efflux out of the cell, committing maximum effect; and in addition, they do not allow permeation to the BBB.

2.
Bioorg Chem ; 139: 106735, 2023 10.
Article in English | MEDLINE | ID: mdl-37531818

ABSTRACT

Vascular endothelial growth factor receptor-2 is a dynamic target for therapeutic intervention in various types of cancer. This study was aimed at exploring the VEGFR-2 inhibitory activity of a novel library of quinoxalin-2-one derivatives such as 3-furoquinoxaline carboxamides, 3-pyrazolylquinoxalines, and 3-pyridopyrimidyl-quinoxalines. Among them, 6c, 7a, and 7d-f produced remarkable cytotoxicity against HCT-116 (IC50's 4.28-9.31 µM) and MCF-7 (IC50's 3.57-7.57 µM) cell lines using the MTT assay and doxorubicin (DOX) as a reference standard. Interestingly, results of cytotoxicity towards the human fibroblast cell line WI38 revealed that these hits demonstrated higher selectivity indices towards both HCT-116 (SI 8.69-23.19) and MCF-7 (SI 9.48-27.80) than DOX, SI 0.72 and 0.90, respectively. Then, these hits were subjected to a mechanistic study; they showed direct inhibition of VEGFR-2. Impressively, compound 7f displayed 1.2 times the VEGFR-2 inhibitory activity of sorafenib. The antiangiogenic potential of 7f was proved via lowering the level of VEGF-A, than that of control. It as well, exhibited scratch closure percent of 61.8%, compared with 74.5% of control at 48 hrs, indicating the potential anti-migratory effect of the compound 7f. It significantly increased the expression of tumor suppressor gene (p53) on MCF-7 cells by almost 18 folds and upregulated the caspase-3 level by 10.7 folds, compared to the control. Cell cycle analysis revealed cell cycle arrest at G2/M together with a PreG increase which indicated apoptosis induction potential. Annexin V-FITC apoptosis results proposed the two modes of cell death (apoptosis and necrosis) as an inherent mechanism of cytotoxicity of compound 7f. Molecular docking further supported the mechanism showing the affinity of target compounds for VEGFR-2 active site. Moreover, physicochemical and drug-like properties were assessed from the ADME properties.


Subject(s)
Antineoplastic Agents , Quinoxalines , Vascular Endothelial Growth Factor Receptor-2 , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Proliferation , Doxorubicin/pharmacology , Drug Design , Drug Screening Assays, Antitumor , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Quinoxalines/pharmacology , Structure-Activity Relationship , Vascular Endothelial Growth Factor A/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors
3.
Bioorg Chem ; 105: 104368, 2020 12.
Article in English | MEDLINE | ID: mdl-33091671

ABSTRACT

The discovery of the antiproliferative potential of tranilast prompted additional studies directed at understanding the mechanisms of tranilast action. Its inhibitory effect on cell proliferation depends principally on the capacity of tranilast to interfere with transforming growth factor beta (TGFßR1) signaling. This work summarizes design, synthesis and biological evaluation of sixteen novel tranilast analogs on different tumors such as PC-3, HepG-2 and MCF-7 cell lines. The in vitro cytotoxicity was evaluated using MTT assay showed that, twelve compounds out of sixteen showed higher cytotoxic activities (IC50's 1.1-6.29 µM), than that of the reference standard, 5-FU (IC50 7.53 µM). The promising cytotoxic hits (4b, 7a, b and 14c-e), proved to be selective to cancer cells when their cytotoxicity's are examined on human normal cell line (WI-38). Then they are investigated for their possible mode of action as TGFßR1 inhibitors; remarkable inhibition of TGFßR1 by these hits was observed at the range of IC50 0.087-3.276 µM. The cell cycle analysis of the most potent TGFßR1 inhibitor, 4b revealed cell cycle arrest at G2/M phase on prostate cancer cells. Additionally, it is clearly indicated apoptosis induction at Pre-G1 phase, this is substantiated by significant increase in the expression on the tumor suppressor gene, p53 and up regulation the level of apoptosis mediator, caspase-3. In addition, in silico study was performed for validating the physicochemical and ADME properties which revealed that, all compounds are orally bioavailable with no side effects complying with Lipinski rule. The proposed mode of action can be further explored on the light of molecular modeling simulation of the most potent compounds, 4b and 14e which were docked into the active sites of TGFßR1 to predict their affinities toward the receptor.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Molecular Docking Simulation , Protein Kinase Inhibitors/pharmacology , Receptor, Transforming Growth Factor-beta Type I/antagonists & inhibitors , ortho-Aminobenzoates/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Cycle/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Receptor, Transforming Growth Factor-beta Type I/metabolism , Structure-Activity Relationship , Tumor Cells, Cultured , ortho-Aminobenzoates/chemical synthesis , ortho-Aminobenzoates/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...