Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Dent J (Basel) ; 12(3)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38534273

ABSTRACT

Mandibular retrognathism occurs by insufficient mandibular growth and causes several issues, such as respiratory difficulty and diminished masticatory function. At present, functional orthodontic appliances are used for stimulating mandibular growth in pediatric cases. However, the effectiveness of functional appliances is not always stable in daily practices. A more effective, reliable, and safer therapeutic method for mandibular growth promotion would be helpful for growing mandibular retrognathism patients. As we previously discovered that nutritional supplementation of myo-inositol in growing mice specifically increases mandibular endochondral growth, we performed preclinical animal experiments in rabbits in this study. Briefly, six-week-old male Japanese white rabbits were fed with or without myo-inositol supplementation in laboratory chow until 25 weeks old, and 3D image analysis using micro CT data and histological examinations was done. Myo-inositol had no systemic effect, such as femur length, though myo-inositol specifically augmented the mandibular growth. Myo-inositol increased the thickness of mandibular condylar cartilage. We discovered that the nutritional supplementation of myo-inositol during the growth period specifically augmented mandibular growth without any systemic influence, even in rabbits. Our results suggest the possibility of clinical use of myo-inositol for augmentation of the mandibular growth in growing mandibular retrognathism patients in the future.

2.
Sci Rep ; 13(1): 18576, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37903847

ABSTRACT

Vascular calcification, an ectopic calcification exacerbated by aging and renal dysfunction, is closely associated with cardiovascular disease. However, early detection indicators are limited. This study focused on dental pulp stones, ectopic calcifications found in oral tissues that are easily identifiable on dental radiographs. Our investigation explored the frequency and timing of these calcifications in different locations and their relationship to aortic calcification. In cadavers, we examined the association between the frequency of dental pulp stones and aortic calcification, revealing a significant association. Notably, dental pulp stones appeared prior to aortic calcification. Using a rat model of hyperphosphatemia, we confirmed that dental pulp stones formed earlier than calcification in the aortic arch. Interestingly, there were very few instances of aortic calcification without dental pulp stones. Additionally, we conducted cell culture experiments with vascular smooth muscle cells (SMCs) and dental pulp cells (DPCs) to explore the regulatory mechanism underlying high phosphate-mediated calcification. We found that DPCs produced calcification deposits more rapidly and exhibited a stronger augmentation of osteoblast differentiation markers compared with SMCs. In conclusion, the observation of dental pulp stones through X-ray examination during dental checkups could be a valuable method for early diagnosis of aortic calcification risk.


Subject(s)
Dental Pulp Calcification , Vascular Calcification , Rats , Animals , X-Rays , Dental Pulp Calcification/diagnostic imaging , Radiography , Vascular Calcification/diagnostic imaging , Early Diagnosis , Dental Pulp/diagnostic imaging
3.
Cancer Sci ; 114(12): 4664-4676, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37724648

ABSTRACT

Despite advanced therapeutics, esophageal squamous cell carcinoma (ESCC) remains one of the deadliest cancers. Here, we propose a novel therapeutic strategy based on synthetic lethality combining trifluridine/tipiracil and MK1775 (WEE1 inhibitor) as a treatment for ESCC. This study demonstrates that trifluridine induces single-strand DNA damage in ESCC cells, as evidenced by phosphorylated replication protein 32. The DNA damage response includes cyclin-dependent kinase 1 (CDK1) (Tyr15) phosphorylation as CDK1 inhibition and a decrease of the proportion of phospho-histone H3 (p-hH3)-positive cells, indicating cell cycle arrest at the G2 phase before mitosis entry. The WEE1 inhibitor remarkedly suppressed CDK1 phosphorylation (Try15) and reactivated CDK1, and also increased the proportion of p-hH3-positive cells, which indicates an increase of the number of cells into mitosis. Trifluridine combined with a WEE1 inhibitor increased trifluridine-mediated DNA damage, namely DNA double-strand breaks, as shown by increased γ-H2AX expression. Moreover, the combination treatment with trifluridine/tipiracil and a WEE1 inhibitor significantly suppressed tumor growth of ESCC-derived xenograft models. Hence, our novel combination treatment with trifluridine/tipiracil and a WEE1 inhibitor is considered a candidate treatment strategy for ESCC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/drug therapy , Trifluridine/pharmacology , Esophageal Neoplasms/drug therapy , Phosphorylation , Histones , Cell Cycle Proteins , Cell Line, Tumor , Protein-Tyrosine Kinases
4.
Sci Rep ; 12(1): 9213, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35654814

ABSTRACT

Clinical cancer genome sequencing detects oncogenic variants that are potential targets for cancer treatment, but it also detects variants of unknown significance. These variants may interact with each other to influence tumor pathophysiology, however, such interactions have not been fully elucidated. Additionally, the effect of target therapy for those variants also unclarified. In this study, we investigated the biological functions of a HER2 mutation (G776S mutation) of unknown pathological significance, which was detected together with APC mutation by cancer genome sequencing of samples from a colorectal cancer (CRC) patient. Transfection of the HER2 G776S mutation alone slightly increased the kinase activity and phosphorylation of HER2 protein, but did not activate HER2 downstream signaling or alter the cell phenotype. On the other hand, the HER2 G776S mutation was shown to have strong oncogenic potential when loss of APC function was accompanied. We revealed that loss of APC function increased Wnt pathway activity but also increased RAS-GTP, which increased ERK phosphorylation triggered by HER2 G776S transfection. In addition, afatinib, a pan-HER tyrosine kinase inhibitor, suppressed tumor growth in xenografts derived from HER2 G776S-transfected CRC cells. These findings suggest that this HER2 mutation in CRC may be a potential therapeutic target.


Subject(s)
Colorectal Neoplasms , Oncogenes , Carcinogenesis/genetics , Colorectal Neoplasms/genetics , Humans , Mutation , Phosphorylation , Psychomotor Agitation
5.
Mol Cancer Ther ; 19(6): 1363-1372, 2020 06.
Article in English | MEDLINE | ID: mdl-32371587

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is a disease characterized by a high mutation rate of the TP53 gene, which plays pivotal roles in the DNA damage response (DDR) and is regulated by checkpoint kinase (CHK) 2. CHK1 is another key DDR-related protein, and its selective inhibition is suggested to be particularly sensitive to TP53-mutated cancers, because a loss of both pathways (CHK1 and/or CHK2-p53) is lethal due to the serious impairment of DDR. Such a therapeutic strategy is termed synthetic lethality. Here, we propose a novel therapeutic strategy based on synthetic lethality combining trifluridine/tipiracil and prexasertib (CHK1 inhibitor) as a treatment for ESCC. Trifluridine is a key component of the antitumor drug combination with trifluridine/tipiracil (an inhibitor of trifluridine degradation), also known as TAS-102. In this study, we demonstrate that trifluridine increases CHK1 phosphorylation in ESCC cells combined with a reduction of the S-phase ratio as well as the induction of ssDNA damage. Because CHK1 phosphorylation is considered to be induced as DDR for trifluridine-mediated DNA damage, we examined the effects of CHK1 inhibition on trifluridine treatment. Consequently, CHK1 inhibition by short hairpin RNA or treatment with the CHK1 inhibitor, prexasertib, markedly enhanced trifluridine-mediated DNA damage, represented by an increase of γH2AX expression. Moreover, the combination of trifluridine/tipiracil and CHK1 inhibition significantly suppressed tumor growth of ESCC-derived xenograft tumors. Furthermore, the combination of trifluridine and prexasertib enhanced radiosensitivity both in vitro and in vivo Thus, the combination of trifluridine/tipiracil and a CHK1 inhibitor exhibits effective antitumor effects, suggesting a novel therapeutic strategy for ESCC.


Subject(s)
Checkpoint Kinase 1/antagonists & inhibitors , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/pathology , Protein Kinase Inhibitors/pharmacology , Pyrrolidines/pharmacology , Synthetic Lethal Mutations , Thymine/pharmacology , Trifluridine/pharmacology , Animals , Apoptosis , Cell Proliferation , Checkpoint Kinase 1/genetics , Drug Combinations , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Humans , Male , Mice , Mice, Hairless , Mice, SCID , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
6.
Carcinogenesis ; 41(2): 194-202, 2020 04 22.
Article in English | MEDLINE | ID: mdl-31074772

ABSTRACT

Alcohol consumption is the key risk factor for the development of esophageal squamous cell carcinoma (ESCC), and acetaldehyde, a metabolite of alcohol, is an alcohol-derived major carcinogen that causes DNA damage. Aldehyde dehydrogenase2 (ALDH2) is an enzyme that detoxifies acetaldehyde, and its activity is reduced by ALDH2 gene polymorphism. Reduction in ALDH2 activity increases blood, salivary and breath acetaldehyde levels after alcohol intake, and it is deeply associated with the development of ESCC. Heavy alcohol consumption in individuals with ALDH2 gene polymorphism significantly elevates the risk of ESCC; however, effective prevention has not been established yet. In this study, we investigated the protective effects of Alda-1, a small molecule ALDH2 activator, on alcohol-mediated esophageal DNA damage. Here, we generated novel genetically engineered knock-in mice that express the human ALDH2*1 (wild-type allele) or ALDH2*2 gene (mutant allele). Those mice were crossed, and human ALDH2*1/*1, ALDH2*1/*2 and ALDH2*2/*2 knock-in mice were established. They were given 10% ethanol for 7 days in the presence or absence of Alda-1, and we measured the levels of esophageal DNA damage, represented by DNA adduct (N2-ethylidene-2'-deoxyguanosine). Alda-1 significantly increased hepatic ALDH2 activity both in human ALDH2*1/*2 and/or ALDH2*2/*2 knock-in mice and reduced esophageal DNA damage levels after alcohol drinking. Conversely, cyanamide, an ALDH2-inhibitor, significantly exacerbated esophageal DNA adduct level in C57BL/6N mice induced by alcohol drinking. These results indicate the protective effects of ALDH2 activation by Alda-1 on esophageal DNA damage levels in individuals with ALDH2 gene polymorphism, providing a new insight into acetaldehyde-mediated esophageal carcinogenesis and prevention.


Subject(s)
Alcohol Drinking/adverse effects , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Benzamides/administration & dosage , Benzodioxoles/administration & dosage , Carcinogenesis/drug effects , Esophageal Neoplasms/prevention & control , Esophageal Squamous Cell Carcinoma/prevention & control , Acetaldehyde/metabolism , Acetaldehyde/toxicity , Aldehyde Dehydrogenase, Mitochondrial/antagonists & inhibitors , Aldehyde Dehydrogenase, Mitochondrial/genetics , Animals , Carcinogenesis/chemically induced , Carcinogenesis/genetics , Cyanamide/administration & dosage , DNA Adducts/drug effects , DNA Damage/drug effects , Esophageal Mucosa/drug effects , Esophageal Mucosa/pathology , Esophageal Neoplasms/etiology , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/etiology , Esophageal Squamous Cell Carcinoma/pathology , Ethanol/metabolism , Ethanol/toxicity , Gene Knock-In Techniques , Humans , Male , Mice, Transgenic , Mutation , Neoplasms, Experimental/etiology , Neoplasms, Experimental/pathology , Neoplasms, Experimental/prevention & control , Polymorphism, Genetic , Risk Factors
7.
J Exp Clin Cancer Res ; 36(1): 101, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28764725

ABSTRACT

BACKGROUND: Epidermal growth factor receptor (EGFR) plays a pivotal role in the pathophysiology of esophageal squamous cell carcinoma (ESCC). However, the clinical effects of EGFR inhibitors on ESCC are controversial. This study sought to identify the factors determining the therapeutic efficacy of EGFR inhibitors in ESCC cells. METHODS: Immortalized-human esophageal epithelial cells (EPC2-hTERT), transformed-human esophageal epithelial cells (T-Epi and T-Mes), and ESCC cells (TE-1, TE-5, TE-8, TE-11, TE-11R, and HCE4) were treated with the EGFR inhibitors erlotinib or cetuximab. Inhibitory effects on cell growth were assessed by cell counting or cell-cycle analysis. The expression levels of genes and proteins such as involucrin and cytokeratin13 (a squamous differentiation marker), E-cadherin, and vimentin were evaluated by real-time polymerase chain reaction or western blotting. To examine whether mesenchymal phenotype influenced the effects of EGFR inhibitors, we treated T-Epi cells with TGF-ß1 to establish a mesenchymal phenotype (mesenchymal T-Epi cells). We then compared the effects of EGFR inhibitors on parental T-Epi cells and mesenchymal T-Epi cells. TE-8 (mesenchymal-like ESCC cells)- or TE-11R (epithelial-like ESCC cells)-derived xenograft tumors in mice were treated with cetuximab, and the antitumor effects of EGFR inhibitors were evaluated. RESULTS: Cells were classified as epithelial-like or mesenchymal-like phenotypes, determined by the expression levels of E-cadherin and vimentin. Both erlotinib and cetuximab reduced cell growth and the ratio of cells in cell-cycle S phase in epithelial-like but not mesenchymal-like cells. Additionally, EGFR inhibitors induced squamous cell differentiation (defined as increased expression of involucrin and cytokeratin13) in epithelial-like but not mesenchymal-like cells. We found that EGFR inhibitors did not suppress the phosphorylation of EGFR in mesenchymal-like cells, while EGFR dephosphorylation was observed after treatment with EGFR inhibitors in epithelial-like cells. Furthermore, mesenchymal T-Epi cells showed resistance to EGFR inhibitors by circumventing the dephosphorylation of EGFR signaling. Cetuximab consistently showed antitumor effects, and increased involucrin expression in TE-11R (epithelial-like)-derived xenograft tumors but not TE-8 (mesenchymal-like)-derived xenograft tumors. CONCLUSIONS: The factor determining the therapeutic effects of EGFR inhibitors in ESCC cells is the phenotype representing the epithelial-like or mesenchymal-like cells. Mesenchymal-like ESCC cells are resistant to EGFR inhibitors because EGFR signaling is not blocked. EGFR inhibitors show antitumor effects on epithelial-like ESCC cells accompanied by promotion of squamous cell differentiation.


Subject(s)
Carcinoma, Squamous Cell/drug therapy , ErbB Receptors/antagonists & inhibitors , Esophageal Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Animals , Carcinoma, Squamous Cell/enzymology , Carcinoma, Squamous Cell/pathology , Cell Differentiation/drug effects , Cell Line, Tumor , Cetuximab/pharmacology , Erlotinib Hydrochloride , Esophageal Neoplasms/enzymology , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma , Humans , Male , Mice , Mice, Nude , Signal Transduction , Xenograft Model Antitumor Assays
8.
Am J Cancer Res ; 5(8): 2431-40, 2015.
Article in English | MEDLINE | ID: mdl-26396918

ABSTRACT

5-Fluorouracil (5-FU) is a key drug for the treatment of esophageal squamous cell carcinoma (ESCC); however, resistance to it remains a critical limitation to its clinical use. To clarify the mechanisms of 5-FU resistance of ESCC, we originally established 5-FU-resistant ESCC cells, TE-5R, by step-wise treatment with continuously increasing concentrations of 5-FU. The half maximal inhibitory concentration of 5-FU showed that TE-5R cells were 15.6-fold more resistant to 5-FU in comparison with parental TE-5 cells. TE-5R cells showed regional copy number amplification of chromosome 1p including the DPYD gene, as well as high mRNA and protein expressions of dihydropyrimidine dehydrogenase (DPD), an enzyme involved in 5-FU degradation. 5-FU treatment resulted in a significant decrease of the intracellular 5-FU concentration and increase of the concentration of α-fluoro-ureidopropionic acid (FUPA), a metabolite of 5-FU, in TE-5R compared with TE-5 cells in vitro. Conversely, gimeracil, a DPD inhibitor, markedly increased the intracellular 5-FU concentration, decreased the intracellular FUPA concentration, and attenuated 5-FU resistance of TE-5R cells. These results indicate that 5-FU resistance of TE-5R cells is due to the rapid degradation of 5-FU by DPD overexpression. The investigation of 5-FU-resistant ESCC with DPYD gene copy number amplification and consequent DPD overexpression may generate novel biological evidence to explore strategies against ESCC with 5-FU resistance.

9.
Mol Syst Biol ; 7: 472, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21364574

ABSTRACT

The discovery of novel bioactive molecules advances our systems-level understanding of biological processes and is crucial for innovation in drug development. For this purpose, the emerging field of chemical genomics is currently focused on accumulating large assay data sets describing compound-protein interactions (CPIs). Although new target proteins for known drugs have recently been identified through mining of CPI databases, using these resources to identify novel ligands remains unexplored. Herein, we demonstrate that machine learning of multiple CPIs can not only assess drug polypharmacology but can also efficiently identify novel bioactive scaffold-hopping compounds. Through a machine-learning technique that uses multiple CPIs, we have successfully identified novel lead compounds for two pharmaceutically important protein families, G-protein-coupled receptors and protein kinases. These novel compounds were not identified by existing computational ligand-screening methods in comparative studies. The results of this study indicate that data derived from chemical genomics can be highly useful for exploring chemical space, and this systems biology perspective could accelerate drug discovery processes.


Subject(s)
Computational Biology/methods , Drug Discovery/methods , Genomics/methods , Protein Kinases/analysis , Receptors, G-Protein-Coupled/analysis , Artificial Intelligence , Binding Sites , Databases, Factual , Dosage Forms , Humans , Ligands , Protein Kinases/chemistry , Receptors, Adrenergic, beta-2/chemistry , Receptors, Adrenergic, beta-2/metabolism , Receptors, G-Protein-Coupled/chemistry , Systems Biology
SELECTION OF CITATIONS
SEARCH DETAIL
...