Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Sci Rep ; 14(1): 12436, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816422

ABSTRACT

We construct non-linear machine learning (ML) prediction models for systolic and diastolic blood pressure (SBP, DBP) using demographic and clinical variables and polygenic risk scores (PRSs). We developed a two-model ensemble, consisting of a baseline model, where prediction is based on demographic and clinical variables only, and a genetic model, where we also include PRSs. We evaluate the use of a linear versus a non-linear model at both the baseline and the genetic model levels and assess the improvement in performance when incorporating multiple PRSs. We report the ensemble model's performance as percentage variance explained (PVE) on a held-out test dataset. A non-linear baseline model improved the PVEs from 28.1 to 30.1% (SBP) and 14.3% to 17.4% (DBP) compared with a linear baseline model. Including seven PRSs in the genetic model computed based on the largest available GWAS of SBP/DBP improved the genetic model PVE from 4.8 to 5.1% (SBP) and 4.7 to 5% (DBP) compared to using a single PRS. Adding additional 14 PRSs computed based on two independent GWASs further increased the genetic model PVE to 6.3% (SBP) and 5.7% (DBP). PVE differed across self-reported race/ethnicity groups, with primarily all non-White groups benefitting from the inclusion of additional PRSs. In summary, non-linear ML models improves BP prediction in models incorporating diverse populations.


Subject(s)
Blood Pressure , Genome-Wide Association Study , Machine Learning , Multifactorial Inheritance , Phenotype , Humans , Blood Pressure/genetics , Multifactorial Inheritance/genetics , Genome-Wide Association Study/methods , Risk Factors , Male , Female , Genetic Predisposition to Disease , Models, Genetic , Hypertension/genetics , Hypertension/physiopathology , Middle Aged , Genetic Risk Score
2.
bioRxiv ; 2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37961394

ABSTRACT

Metformin is a widely prescribed anti-diabetic medicine that also reduces body weight. The mechanisms that mediate metformin's effects on energy balance remain incompletely defined. Here we show that metformin is a powerful pharmacological inducer of the anorexigenic metabolite Lac-Phe in mice as well as in two independent human cohorts. In cell culture, metformin drives Lac-Phe biosynthesis via inhibition of complex I, increased glycolytic flux, and intracellular lactate mass action. Other biguanides and structurally distinct inhibitors of oxidative phosphorylation also increase Lac-Phe levels in vitro. Genetic ablation of CNDP2, the principal biosynthetic enzyme for Lac-Phe, in mice renders animals resistant to metformin's anorexigenic and anti-obesity effects. Mediation analyses also support a role for Lac-Phe in metformin's effect on body mass index in humans. These data establish the CNDP2/Lac-Phe pathway as a critical mediator of the effects of metformin on energy balance.

3.
Front Genet ; 14: 1278215, 2023.
Article in English | MEDLINE | ID: mdl-38162683

ABSTRACT

Introduction: Apparent treatment-resistant hypertension (aTRH) is characterized by the use of four or more antihypertensive (AHT) classes to achieve blood pressure (BP) control. In the current study, we conducted single-variant and gene-based analyses of aTRH among individuals from 12 Trans-Omics for Precision Medicine cohorts with whole-genome sequencing data. Methods: Cases were defined as individuals treated for hypertension (HTN) taking three different AHT classes, with average systolic BP ≥ 140 or diastolic BP ≥ 90 mmHg, or four or more medications regardless of BP (n = 1,705). A normotensive control group was defined as individuals with BP < 140/90 mmHg (n = 22,079), not on AHT medication. A second control group comprised individuals who were treatment responsive on one AHT medication with BP < 140/ 90 mmHg (n = 5,424). Logistic regression with kinship adjustment using the Scalable and Accurate Implementation of Generalized mixed models (SAIGE) was performed, adjusting for age, sex, and genetic ancestry. We assessed variants using SKAT-O in rare-variant analyses. Single-variant and gene-based tests were conducted in a pooled multi-ethnicity stratum, as well as self-reported ethnic/racial strata (European and African American). Results: One variant in the known HTN locus, KCNK3, was a top finding in the multi-ethnic analysis (p = 8.23E-07) for the normotensive control group [rs12476527, odds ratio (95% confidence interval) = 0.80 (0.74-0.88)]. This variant was replicated in the Vanderbilt University Medical Center's DNA repository data. Aggregate gene-based signals included the genes AGTPBP, MYL4, PDCD4, BBS9, ERG, and IER3. Discussion: Additional work validating these loci in larger, more diverse populations, is warranted to determine whether these regions influence the pathobiology of aTRH.

4.
Circulation ; 145(5): 357-370, 2022 02.
Article in English | MEDLINE | ID: mdl-34814699

ABSTRACT

BACKGROUND: Plasma proteins are critical mediators of cardiovascular processes and are the targets of many drugs. Previous efforts to characterize the genetic architecture of the plasma proteome have been limited by a focus on individuals of European descent and leveraged genotyping arrays and imputation. Here we describe whole genome sequence analysis of the plasma proteome in individuals with greater African ancestry, increasing our power to identify novel genetic determinants. METHODS: Proteomic profiling of 1301 proteins was performed in 1852 Black adults from the Jackson Heart Study using aptamer-based proteomics (SomaScan). Whole genome sequencing association analysis was ascertained for all variants with minor allele count ≥5. Results were validated using an alternative, antibody-based, proteomic platform (Olink) as well as replicated in the Multi-Ethnic Study of Atherosclerosis and the HERITAGE Family Study (Health, Risk Factors, Exercise Training and Genetics). RESULTS: We identify 569 genetic associations between 479 proteins and 438 unique genetic regions at a Bonferroni-adjusted significance level of 3.8×10-11. These associations include 114 novel locus-protein relationships and an additional 217 novel sentinel variant-protein relationships. Novel cardiovascular findings include new protein associations at the APOE gene locus including ZAP70 (sentinel single nucleotide polymorphism [SNP] rs7412-T, ß=0.61±0.05, P=3.27×10-30) and MMP-3 (ß=-0.60±0.05, P=1.67×10-32), as well as a completely novel pleiotropic locus at the HPX gene, associated with 9 proteins. Further, the associations suggest new mechanisms of genetically mediated cardiovascular disease linked to African ancestry; we identify a novel association between variants linked to APOL1-associated chronic kidney and heart disease and the protein CKAP2 (rs73885319-G, ß=0.34±0.04, P=1.34×10-17) as well as an association between ATTR amyloidosis and RBP4 levels in community-dwelling individuals without heart failure. CONCLUSIONS: Taken together, these results provide evidence for the functional importance of variants in non-European populations, and suggest new biological mechanisms for ancestry-specific determinants of lipids, coagulation, and myocardial function.


Subject(s)
Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Genome-Wide Association Study/methods , Proteome/metabolism , Adult , Black People , Female , Humans , Male
5.
J Hepatol ; 74(1): 20-30, 2021 01.
Article in English | MEDLINE | ID: mdl-32882372

ABSTRACT

BACKGROUND & AIMS: A common genetic variant near MBOAT7 (rs641738C>T) has been previously associated with hepatic fat and advanced histology in NAFLD; however, these findings have not been consistently replicated in the literature. We aimed to establish whether rs641738C>T is a risk factor across the spectrum of NAFLD and to characterise its role in the regulation of related metabolic phenotypes through a meta-analysis. METHODS: We performed a meta-analysis of studies with data on the association between rs641738C>T genotype and liver fat, NAFLD histology, and serum alanine aminotransferase (ALT), lipids or insulin. These included directly genotyped studies and population-level data from genome-wide association studies (GWAS). We performed a random effects meta-analysis using recessive, additive and dominant genetic models. RESULTS: Data from 1,066,175 participants (9,688 with liver biopsies) across 42 studies were included in the meta-analysis. rs641738C>T was associated with higher liver fat on CT/MRI (+0.03 standard deviations [95% CI 0.02-0.05], pz = 4.8×10-5) and diagnosis of NAFLD (odds ratio [OR] 1.17 [95% CI 1.05-1.3], pz = 0.003) in Caucasian adults. The variant was also positively associated with presence of advanced fibrosis (OR 1.22 [95% CI 1.03-1.45], pz = 0.021) in Caucasian adults using a recessive model of inheritance (CC + CT vs. TT). Meta-analysis of data from previous GWAS found the variant to be associated with higher ALT (pz = 0.002) and lower serum triglycerides (pz = 1.5×10-4). rs641738C>T was not associated with fasting insulin and no effect was observed in children with NAFLD. CONCLUSIONS: Our study validates rs641738C>T near MBOAT7 as a risk factor for the presence and severity of NAFLD in individuals of European descent. LAY SUMMARY: Fatty liver disease is a common condition where fat builds up in the liver, which can cause liver inflammation and scarring (including 'cirrhosis'). It is closely linked to obesity and diabetes, but some genes are also thought to be important. We did this study to see whether one specific change ('variant') in one gene ('MBOAT7') was linked to fatty liver disease. We took data from over 40 published studies and found that this variant near MBOAT7 is linked to more severe fatty liver disease. This means that drugs designed to work on MBOAT7 could be useful for treating fatty liver disease.


Subject(s)
Acyltransferases/genetics , Liver Cirrhosis , Liver/pathology , Membrane Proteins/genetics , Non-alcoholic Fatty Liver Disease , Alanine Transaminase/blood , Drug Discovery , Genetic Predisposition to Disease , Humans , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Polymorphism, Single Nucleotide
6.
Diabetes ; 69(12): 2806-2818, 2020 12.
Article in English | MEDLINE | ID: mdl-32917775

ABSTRACT

Leptin influences food intake by informing the brain about the status of body fat stores. Rare LEP mutations associated with congenital leptin deficiency cause severe early-onset obesity that can be mitigated by administering leptin. However, the role of genetic regulation of leptin in polygenic obesity remains poorly understood. We performed an exome-based analysis in up to 57,232 individuals of diverse ancestries to identify genetic variants that influence adiposity-adjusted leptin concentrations. We identify five novel variants, including four missense variants, in LEP, ZNF800, KLHL31, and ACTL9, and one intergenic variant near KLF14. The missense variant Val94Met (rs17151919) in LEP was common in individuals of African ancestry only, and its association with lower leptin concentrations was specific to this ancestry (P = 2 × 10-16, n = 3,901). Using in vitro analyses, we show that the Met94 allele decreases leptin secretion. We also show that the Met94 allele is associated with higher BMI in young African-ancestry children but not in adults, suggesting that leptin regulates early adiposity.


Subject(s)
Adiposity/genetics , Leptin/metabolism , Racial Groups/genetics , Gene Expression Regulation, Developmental , Genetic Variation , Genotype , Humans , Leptin/blood , Leptin/chemistry , Leptin/genetics , Models, Molecular , Protein Conformation
7.
Circ Genom Precis Med ; 13(4): e002680, 2020 08.
Article in English | MEDLINE | ID: mdl-32602732

ABSTRACT

BACKGROUND: We examined how expanding electrocardiographic trait genome-wide association studies to include ancestrally diverse populations, prioritize more precise phenotypic measures, and evaluate evidence for shared genetic effects enabled the detection and characterization of loci. METHODS: We decomposed 10 seconds, 12-lead electrocardiograms from 34 668 multi-ethnic participants (15% Black; 30% Hispanic/Latino) into 6 contiguous, physiologically distinct (P wave, PR segment, QRS interval, ST segment, T wave, and TP segment) and 2 composite, conventional (PR interval and QT interval) interval scale traits and conducted multivariable-adjusted, trait-specific univariate genome-wide association studies using 1000-G imputed single-nucleotide polymorphisms. Evidence of shared genetic effects was evaluated by aggregating meta-analyzed univariate results across the 6 continuous electrocardiographic traits using the combined phenotype adaptive sum of powered scores test. RESULTS: We identified 6 novels (CD36, PITX2, EMB, ZNF592, YPEL2, and BC043580) and 87 known loci (adaptive sum of powered score test P<5×10-9). Lead single-nucleotide polymorphism rs3211938 at CD36 was common in Blacks (minor allele frequency=10%), near monomorphic in European Americans, and had effects on the QT interval and TP segment that ranked among the largest reported to date for common variants. The other 5 novel loci were observed when evaluating the contiguous but not the composite electrocardiographic traits. Combined phenotype testing did not identify novel electrocardiographic loci unapparent using traditional univariate approaches, although this approach did assist with the characterization of known loci. CONCLUSIONS: Despite including one-third as many participants as published electrocardiographic trait genome-wide association studies, our study identified 6 novel loci, emphasizing the importance of ancestral diversity and phenotype resolution in this era of ever-growing genome-wide association studies.


Subject(s)
Cardiovascular Diseases/genetics , Electrocardiography , Genome-Wide Association Study , Black or African American/genetics , CD36 Antigens/genetics , Cardiovascular Diseases/ethnology , Cardiovascular Diseases/physiopathology , Gene Frequency , Genetic Loci , Genotype , Hispanic or Latino/genetics , Homeodomain Proteins/genetics , Humans , Membrane Glycoproteins/genetics , Molecular Chaperones/genetics , Phenotype , Polymorphism, Single Nucleotide , Transcription Factors/genetics , White People/genetics , Homeobox Protein PITX2
8.
Clin Endocrinol (Oxf) ; 93(2): 163-172, 2020 08.
Article in English | MEDLINE | ID: mdl-32286715

ABSTRACT

CONTEXT: Polycystic ovary syndrome (PCOS) is a highly prevalent disorder associated with insulin resistance (IR) and compensatory hyperinsulinemia. Although variations in cardiometabolic risks across race and ethnicities have been reported in the general population, racial/ethnic disparities in the metabolic dysfunction of PCOS remain relatively unstudied. OBJECTIVES: To determine whether markers of metabolic function differ in nondiabetic Asian American (AS), African American (AA), Hispanic White (HW), compared to non-Hispanic White (NHW) women with PCOS. DESIGN AND SETTING: Prospective cross-sectional study in a tertiary institution. PARTICIPANTS AND INTERVENTIONS: A total of 259 nondiabetic women with PCOS (by NIH 1990 criteria) who completed a 2-hour 75-g oral glucose tolerance test measuring plasma glucose and insulin levels. Basal IR and insulin secretion, assessed by the homeostasis model assessment (HOMA-IR and HOMA-ß%, respectively), and two-hour hyperglycaemia and hyperinsulinemia after an oral glucose load, were compared in 21 AS, 24 AA, 53 HW and 161 NHW consecutive nondiabetic adult PCOS women. RESULTS: After adjusting for age and body mass index, HW and AA PCOS women demonstrated higher fasting and post-glucose challenge insulin levels, and higher HOMA-IR and HOMA-ß%, than NHW women, although glucose levels were similar. In contrast, AS PCOS women had or tended to have lower HOMA-ß% than any other racial/ethnic groups, lower HOMA-IR, and fasting and post-challenge insulin levels than AA or HW, and also had higher (albeit still normal) mean post-challenge glucose levels than NHW women with PCOS despite similar HOMA-IR, and fasting insulin and post-challenge insulin levels. Waist-hip ratio was similar across the four groups. CONCLUSION: Both HW and AA women with PCOS have increased basal state IR and higher ß-cell response, and post-challenge hyperinsulinemia compared to NHW and AS subjects. The trend towards a lesser insulin response among Asian women requires further investigation. These findings suggest that the screening and management of metabolic dysfunction in PCOS should consider patients' race/ethnicity.


Subject(s)
Insulin Resistance , Polycystic Ovary Syndrome , Blood Glucose , Body Mass Index , Cross-Sectional Studies , Female , Glucose Tolerance Test , Humans , Insulin , Prospective Studies
10.
Fertil Steril ; 111(3): 535-546, 2019 03.
Article in English | MEDLINE | ID: mdl-30611556

ABSTRACT

OBJECTIVE: To identify differences in the transcriptomic profiles during placentation from pregnancies conceived spontaneously vs. those with infertility using non-in vitro fertilization (IVF) fertility treatment (NIFT) or IVF. DESIGN: Cohort study. SETTING: Academic medical center. PATIENT(S): Women undergoing chorionic villus sampling at gestational age 11-13 weeks (n = 141), with pregnancies that were conceived spontaneously (n = 74), with NIFT (n = 33), or with IVF (n = 34), resulting in the delivery of viable offspring. INTERVENTION(S): Collection of chorionic villus samples from women who conceived spontaneously, with NIFT, or with IVF for gene expression analysis using RNA sequencing. MAIN OUTCOME MEASURE(S): Baseline maternal, paternal, and fetal demographics, maternal medical conditions, pregnancy complications, and outcomes. Differential gene expression of first-trimester placenta. RESULT(S): There were few differences in the transcriptome of first-trimester placenta from NIFT, IVF, and spontaneous pregnancies. There was one protein-coding differentially expressed gene (DEG) between the spontaneous and infertility groups, CACNA1I, one protein-coding DEG between the spontaneous and IVF groups, CACNA1I, and five protein-coding DEGs between the NIFT and IVF groups, SLC18A2, CCL21, FXYD2, PAEP, and DNER. CONCLUSION(S): This is the first and largest study looking at transcriptomic profiles of first-trimester placenta demonstrating similar transcriptomic profiles in pregnancies conceived using NIFT or IVF and spontaneous conceptions. Gene expression differences found to be highest in the NIFT group suggest that the underlying infertility, in addition to treatment-related factors, may contribute to the observed gene expression profiles.


Subject(s)
Infertility/genetics , Infertility/therapy , Placentation/genetics , Reproductive Techniques, Assisted , Transcriptome , Adult , Female , Fertility/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Developmental , Humans , Infertility/diagnosis , Infertility/physiopathology , Live Birth , Male , Middle Aged , Pregnancy , Treatment Outcome
11.
Ophthalmology ; 126(1): 38-48, 2019 01.
Article in English | MEDLINE | ID: mdl-30352225

ABSTRACT

PURPOSE: To find genetic contributions to glaucoma in African Americans. DESIGN: Cross-sectional, case-control study. PARTICIPANTS: One thousand eight hundred seventy-five primary open-angle glaucoma (POAG) patients and 1709 controls, self-identified as being of African descent (AD), from the African Descent and Glaucoma Evaluation Study (ADAGES) III and Wake Forest School of Medicine. METHODS: MegaChip genotypes were imputed to Thousand Genomes data. Association of single nucleotide polymorphisms (SNPs) with POAG and advanced POAG was tested by linear mixed model correcting for relatedness and population stratification. Genetic risk scores were tested by receiver operator characteristic curves (ROC-AUCs). MAIN OUTCOME MEASURES: Primary open-angle glaucoma defined by visual field loss without other nonocular conditions (n = 1875). Advanced POAG was defined by age-based mean deviation of visual field (n = 946). RESULTS: Eighteen million two hundred eighty-one thousand nine hundred twenty SNPs met imputation quality of r2 > 0.7 and minor allele frequency > 0.005. Association of a novel locus, EN04, was observed for advanced POAG (rs185815146 ß, 0.36; standard error, 0.065; P < 3×10-8). For POAG, an AD signal was observed at the 9p21 European descent (ED) POAG signal (rs79721419; P < 6.5×10-5) independent of the previously observed 9p21 ED signal (rs2383204; P < 2.3×10-5) by conditional analyses. An association with POAG in FNDC3B (rs111698934; P < 3.9×10-5) was observed, not in linkage disequilibrium (LD) with the previously reported ED SNP. Additional previously identified loci associated with POAG in persons of AD were: 8q22, AFAP1, and TMC01. An AUC of 0.62 was observed with an unweighted genetic risk score comprising 11 SNPs in candidate genes. Two additional risk scores were studied by using a penalized matrix decomposition with cross-validation; risk scores of 50 and 400 SNPs were identified with ROC of AUC = 0.74 and AUC = 0.94, respectively. CONCLUSIONS: A novel association with advanced POAG in the EN04 locus was identified putatively in persons of AD. In addition to this finding, this genome-wide association study in POAG patients of AD contributes to POAG genetics by identification of novel signals in prior loci (9p21), as well as advancing the fine mapping of regions because of shorter average LD (FNDC3B). Although not useful without confirmation and clinical trials, the use of genetic risk scores demonstrated that considerable AD-specific genetic information remains in these data.


Subject(s)
Black or African American/genetics , Glaucoma, Open-Angle/genetics , Phosphopyruvate Hydratase/genetics , Polymorphism, Single Nucleotide , Aged , Case-Control Studies , Cross-Sectional Studies , Female , Gene Frequency , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Glaucoma, Open-Angle/diagnosis , Humans , Intraocular Pressure , Male , Middle Aged , ROC Curve
12.
Circulation ; 139(13): 1593-1602, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30586733

ABSTRACT

BACKGROUND: The relative prevalence and clinical importance of monogenic mutations related to familial hypercholesterolemia and of high polygenic score (cumulative impact of many common variants) pathways for early-onset myocardial infarction remain uncertain. Whole-genome sequencing enables simultaneous ascertainment of both monogenic mutations and polygenic score for each individual. METHODS: We performed deep-coverage whole-genome sequencing of 2081 patients from 4 racial subgroups hospitalized in the United States with early-onset myocardial infarction (age ≤55 years) recruited with a 2:1 female-to-male enrollment design. We compared these genomes with those of 3761 population-based control subjects. We first identified individuals with a rare, monogenic mutation related to familial hypercholesterolemia. Second, we calculated a recently developed polygenic score of 6.6 million common DNA variants to quantify the cumulative susceptibility conferred by common variants. We defined high polygenic score as the top 5% of the control distribution because this cutoff has previously been shown to confer similar risk to that of familial hypercholesterolemia mutations. RESULTS: The mean age of the 2081 patients presenting with early-onset myocardial infarction was 48 years, and 66% were female. A familial hypercholesterolemia mutation was present in 36 of these patients (1.7%) and was associated with a 3.8-fold (95% CI, 2.1-6.8; P<0.001) increased odds of myocardial infarction. Of the patients with early-onset myocardial infarction, 359 (17.3%) carried a high polygenic score, associated with a 3.7-fold (95% CI, 3.1-4.6; P<0.001) increased odds. Mean estimated untreated low-density lipoprotein cholesterol was 206 mg/dL in those with a familial hypercholesterolemia mutation, 132 mg/dL in those with high polygenic score, and 122 mg/dL in those in the remainder of the population. Although associated with increased risk in all racial groups, high polygenic score demonstrated the strongest association in white participants ( P for heterogeneity=0.008). CONCLUSIONS: Both familial hypercholesterolemia mutations and high polygenic score are associated with a >3-fold increased odds of early-onset myocardial infarction. However, high polygenic score has a 10-fold higher prevalence among patients presents with early-onset myocardial infarction. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov . Unique identifier: NCT00597922.


Subject(s)
Genetic Predisposition to Disease , Genome, Human , Hyperlipoproteinemia Type II/genetics , Multifactorial Inheritance , Myocardial Infarction/genetics , Aged , Cholesterol, LDL/genetics , Female , Humans , Hyperlipoproteinemia Type II/blood , Male , Middle Aged , Myocardial Infarction/blood , Whole Genome Sequencing
13.
Circ Cardiovasc Genet ; 10(2): e001527, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28348047

ABSTRACT

BACKGROUND: Genome-wide single marker and gene-based meta-analyses of long-term average (LTA) blood pressure (BP) phenotypes may reveal novel findings for BP. METHODS AND RESULTS: We conducted genome-wide analysis among 18 422 East Asian participants (stage 1) followed by replication study of ≤46 629 participants of European ancestry (stage 2). Significant single-nucleotide polymorphisms and genes were determined by a P<5.0×10-8 and 2.5×10-6, respectively, in joint analyses of stage-1 and stage-2 data. We identified 1 novel ARL3 variant, rs4919669 at 10q24.32, influencing LTA systolic BP (stage-1 P=5.03×10-8, stage-2 P=8.64×10-3, joint P=2.63×10-8) and mean arterial pressure (stage-1 P=3.59×10-9, stage-2 P=2.35×10-2, joint P=2.64×10-8). Three previously reported BP loci (WBP1L, NT5C2, and ATP2B1) were also identified for all BP phenotypes. Gene-based analysis provided the first robust evidence for association of KCNJ11 with LTA systolic BP (stage-1 P=8.55×10-6, stage-2 P=1.62×10-5, joint P=3.28×10-9) and mean arterial pressure (stage-1 P=9.19×10-7, stage-2 P=9.69×10-5, joint P=2.15×10-9) phenotypes. Fourteen genes (TMEM180, ACTR1A, SUFU, ARL3, SFXN2, WBP1L, CYP17A1, C10orf32, C10orf32-ASMT, AS3MT, CNNM2, and NT5C2 at 10q24.32; ATP2B1 at 12q21.33; and NCR3LG1 at 11p15.1) implicated by previous genome-wide association study meta-analyses were also identified. Among the loci identified by the previous genome-wide association study meta-analysis of LTA BP, we transethnically replicated associations of the KCNK3 marker rs1275988 at 2p23.3 with LTA systolic BP and mean arterial pressure phenotypes (P=1.27×10-4 and 3.30×10-4, respectively). CONCLUSIONS: We identified 1 novel variant and 1 novel gene and present the first direct evidence of relevance of the KCNK3 locus for LTA BP among East Asians.


Subject(s)
Asian People/genetics , Blood Pressure/genetics , Genetic Loci , Genome-Wide Association Study , Phenotype , Polymorphism, Single Nucleotide , Asia, Eastern , Female , Humans , Male
14.
J Hum Genet ; 62(2): 175-184, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27535031

ABSTRACT

Linkage studies of complex genetic diseases have been largely replaced by genome-wide association studies, due in part to limited success in complex trait discovery. However, recent interest in rare and low-frequency variants motivates re-examination of family-based methods. In this study, we investigated the performance of two-point linkage analysis for over 1.6 million single-nucleotide polymorphisms (SNPs) combined with single variant association analysis to identify high impact variants, which are both strongly linked and associated with cardiometabolic traits in up to 1414 Hispanics from the Insulin Resistance Atherosclerosis Family Study (IRASFS). Evaluation of all 50 phenotypes yielded 83 557 000 LOD (logarithm of the odds) scores, with 9214 LOD scores ⩾3.0, 845 ⩾4.0 and 89 ⩾5.0, with a maximal LOD score of 6.49 (rs12956744 in the LAMA1 gene for tumor necrosis factor-α (TNFα) receptor 2). Twenty-seven variants were associated with P<0.005 as well as having an LOD score >4, including variants in the NFIB gene under a linkage peak with TNFα receptor 2 levels on chromosome 9. Linkage regions of interest included a broad peak (31 Mb) on chromosome 1q with acute insulin response (max LOD=5.37). This region was previously documented with type 2 diabetes in family-based studies, providing support for the validity of these results. Overall, we have demonstrated the utility of two-point linkage and association in comprehensive genome-wide array-based SNP genotypes.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Genetic Linkage/genetics , Insulin Resistance/genetics , Laminin/genetics , NFI Transcription Factors/genetics , Tumor Necrosis Factor-alpha/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Female , Genome-Wide Association Study , Genotype , Hispanic or Latino/genetics , Humans , Lod Score , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Young Adult
15.
Eur J Hum Genet ; 24(8): 1181-7, 2016 08.
Article in English | MEDLINE | ID: mdl-26757982

ABSTRACT

Waist-to-hip ratio (WHR), a relative comparison of waist and hip circumferences, is an easily accessible measurement of body fat distribution, in particular central abdominal fat. A high WHR indicates more intra-abdominal fat deposition and is an established risk factor for cardiovascular disease and type 2 diabetes. Recent genome-wide association studies have identified numerous common genetic loci influencing WHR, but the contributions of rare variants have not been previously reported. We investigated rare variant associations with WHR in 1510 European-American and 1186 African-American women from the National Heart, Lung, and Blood Institute-Exome Sequencing Project. Association analysis was performed on the gene level using several rare variant association methods. The strongest association was observed for rare variants in IKBKB (P=4.0 × 10(-8)) in European-Americans, where rare variants in this gene are predicted to decrease WHRs. The activation of the IKBKB gene is involved in inflammatory processes and insulin resistance, which may affect normal food intake and body weight and shape. Meanwhile, aggregation of rare variants in COBLL1, previously found to harbor common variants associated with WHR and fasting insulin, were nominally associated (P=2.23 × 10(-4)) with higher WHR in European-Americans. However, these significant results are not shared between African-Americans and European-Americans that may be due to differences in the allelic architecture of the two populations and the small sample sizes. Our study indicates that the combined effect of rare variants contribute to the inter-individual variation in fat distribution through the regulation of insulin response.


Subject(s)
Black or African American/genetics , I-kappa B Kinase/genetics , Polymorphism, Genetic , Transcription Factors/genetics , Waist-Hip Ratio , White People/genetics , Adult , Aged , Aged, 80 and over , Alleles , Exome , Female , Humans , Middle Aged
16.
Hum Mol Genet ; 25(24): 5500-5512, 2016 12 15.
Article in English | MEDLINE | ID: mdl-28426890

ABSTRACT

Genome-wide association studies have identified over 150 loci associated with lipid traits, however, no large-scale studies exist for Hispanics and other minority populations. Additionally, the genetic architecture of lipid-influencing loci remains largely unknown. We performed one of the most racially/ethnically diverse fine-mapping genetic studies of HDL-C, LDL-C, and triglycerides to-date using SNPs on the MetaboChip array on 54,119 individuals: 21,304 African Americans, 19,829 Hispanic Americans, 12,456 Asians, and 530 American Indians. The majority of signals found in these groups generalize to European Americans. While we uncovered signals unique to racial/ethnic populations, we also observed systematically consistent lipid associations across these groups. In African Americans, we identified three novel signals associated with HDL-C (LPL, APOA5, LCAT) and two associated with LDL-C (ABCG8, DHODH). In addition, using this population, we refined the location for 16 out of the 58 known MetaboChip lipid loci. These results can guide tailored screening efforts, reveal population-specific responses to lipid-lowering medications, and aid in the development of new targeted drug therapies.


Subject(s)
Cholesterol, HDL/genetics , Cholesterol, LDL/genetics , Genome-Wide Association Study , Lipids/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 8/genetics , Black or African American/genetics , Apolipoprotein A-V/genetics , Asian People/genetics , Female , Hispanic or Latino/genetics , Humans , Indians, North American/genetics , Lipoprotein Lipase/genetics , Male , Triglycerides/genetics
17.
Am J Hypertens ; 25(7): 812-7, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22534796

ABSTRACT

BACKGROUND: Hypertension (HTN) represents a complex heritable disease in which environmental factors may directly affect gene function via epigenetic mechanisms. The aim of this study was to test the hypothesis that dietary salt influences the activity of a histone-modifying enzyme, lysine-specific demethylase 1 (LSD-1), which in turn is associated with salt-sensitivity of blood pressure (BP). METHODS: Animal and human studies were performed. Salt-sensitivity of LSD-1 expression was assessed in wild-type (WT) and LSD-1 heterozygote knockout (LSD-1(+/-)) mice. Clinical relevance was tested by multivariate associations between single-nuclear polymorphisms (SNPs) in the LSD-1 gene and salt-sensitivity of BP, with control of dietary sodium, in a primary African-American hypertensive cohort and two replication hypertensive cohorts (Caucasian and Mexican-American). RESULTS: LSD-1 expression was modified by dietary salt in WT mice with lower levels associated with liberal salt intake. LSD-1(+/-) mice expressed lower LSD-1 protein levels than WT mice in kidney tissue. Similar to LSD-1(+/-) mice, African-American minor allele carriers of two LSD-1 SNPs displayed greater change in systolic BP (SBP) in response to change from low to liberal salt diet (rs671357, P = 0.01; rs587168, P = 0.005). This association was replicated in the Hispanic (rs587168, P = 0.04) but not the Caucasian cohort. Exploratory analyses demonstrated decreased serum aldosterone concentrations in African-American minor allele carriers similar to findings in the LSD-1(+/-) mice, decreased α-EnaC expression in LSD-1(+/-) mice, and impaired renovascular responsiveness to salt loading in minor allele carriers. CONCLUSION: The results of this translational research study support a role for LSD-1 in the pathogenesis of salt-sensitive HTN.


Subject(s)
Epigenesis, Genetic , Histone Demethylases/genetics , Hypertension/etiology , Hypertension/genetics , Oxidoreductases, N-Demethylating/genetics , Sodium Chloride, Dietary/administration & dosage , Black or African American/genetics , Animals , Blood Pressure/physiology , Humans , Kidney/enzymology , Mice , Phenotype
18.
Am J Epidemiol ; 172(10): 1144-54, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-20961972

ABSTRACT

Diabetes mellitus and hypertension commonly coexist, but the nature of this link is not well understood. The authors tested whether diabetes and higher concentrations of fasting serum glucose and insulin are associated with increased risk of developing incident hypertension in the community-based Multi-Ethnic Study of Atherosclerosis. At baseline, 3,513 participants were free of hypertension, defined as systolic blood pressure ≥140 mm Hg, diastolic blood pressure ≥90 mm Hg, or use of antihypertensive medications to treat high blood pressure. Of these, 965 participants (27%) developed incident hypertension over 4.7 years' median follow-up between 2002 and 2007. Compared with participants with normal baseline fasting glucose, those with impaired fasting glucose and diabetes had adjusted relative risks of hypertension of 1.16 (95% confidence interval (CI): 0.96, 1.40) and 1.41 (95% CI: 1.17, 1.71), respectively (P = 0.0015). The adjusted relative risk of incident hypertension was 1.08 (95% CI: 1.04, 1.13) for each mmol/L higher glucose (P < 0.0001) and 1.15 (95% CI: 1.05, 1.25) for each doubling of insulin (P = 0.0016). Further adjustment for serum cystatin C, urinary albumin/creatinine ratio, and arterial elasticity measured by tonometry substantially reduced the magnitudes of these associations. In conclusion, diabetes and higher concentrations of glucose and insulin may contribute to the development of hypertension, in part through kidney disease and arterial stiffness.


Subject(s)
Atherosclerosis/epidemiology , Diabetes Mellitus/epidemiology , Hypertension/epidemiology , Obesity/epidemiology , Atherosclerosis/blood , Atherosclerosis/ethnology , Blood Glucose/metabolism , Comorbidity , Diabetes Mellitus/blood , Diabetes Mellitus/ethnology , Female , Humans , Hypertension/blood , Hypertension/ethnology , Insulin/blood , Male , Middle Aged , Obesity/ethnology
SELECTION OF CITATIONS
SEARCH DETAIL
...