Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Photobiomodul Photomed Laser Surg ; 41(12): 694-702, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38085185

ABSTRACT

Objective: This study aimed to determine microglial/astrocyte changes and their associated analgesic effect in inferior alveolar nerve injury (IANI) model rats treated with photobiomodulation therapy (PBMT) using a 940-nm diode laser. Background: Very few basic studies have investigated microglial/astrocyte dynamics following PBMT aimed at relieving neuropathic pain caused by IANI. Methods: Rats were divided into an IANI-PBM group, IANI+PBM group, and sham+PBM group. Observations were made on the day before IANI or the sham operation and on postoperative days 3, 5, 7, 14, and 28. PBMT was delivered for 7 consecutive days, with an energy density of 8 J/cm2. Behavioral analysis was performed to determine pain thresholds, and immunohistological staining was performed for the microglia marker Iba1 and astrocyte marker glial fibrillary acidic protein, which are observed in the spinal trigeminal nucleus. Results: Behavioral analysis showed that the pain threshold returned to the preoperative level on postoperative day 14 in the IANI+PBM group, but decreased starting from postoperative day 1 and did not improve thereafter in the IANI-PBM group (p ≤ 0.001). Immunological analysis showed that microglial and astrocyte cell counts were similar in the IANI+PBM group and IANI-PBM group shortly after IANI (day 3), but the expression area was larger (p ≤ 0.001) and hypertrophy of microglia and astrocyte cell bodies and end-feet extension (i.e., indicators of activation) were more prominent in the IANI+PBM group. Conclusions: PBMT after IANI prevented hyperalgesia and allodynia by promoting glial cell activation shortly after injury.


Subject(s)
Low-Level Light Therapy , Neuralgia , Rats , Animals , Microglia , Astrocytes/metabolism , Rats, Sprague-Dawley , Low-Level Light Therapy/adverse effects , Neuralgia/radiotherapy , Hyperalgesia/radiotherapy , Hyperalgesia/etiology , Hyperalgesia/metabolism , Mandibular Nerve/metabolism
2.
Diseases ; 11(4)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38131978

ABSTRACT

A number of studies have recently demonstrated the effectiveness of CO2 laser irradiation for the repair and regeneration of scar tissue from injuries or surgical wounds. However, such studies of the oral mucosa are highly limited. Previous studies using CO2 laser irradiation have indicated that two factors contribute to esthetic healing, namely, artificial scabs, which are a coagulated and carbonized blood layer formed on the wound surface, and photobiomodulation therapy (PBMT) for suppressing wound scarring and promoting wound healing. This review outlines basic research and clinical studies of esthetic healing with the use of a CO2 laser for both artificial scab formation by high-intensity laser therapy and PBMT in the treatment of injuries and surgical wounds with small parenchymal defects in oral soft tissues. The results showed that the wound surface was covered by an artificial scab, enabling the accumulation of blood and the perfusion necessary for tissue regeneration and repair. Subsequent PBMT also downregulated the expression of transformation growth factor-b1, which is involved in tissue scarring, and decreased the appearance of myofibroblasts. Taken together, artificial scabs and PBMT using CO2 lasers contribute to the suppression of scarring in the tissue repair process, leading to favorable esthetic and functional outcomes of wound healing.

SELECTION OF CITATIONS
SEARCH DETAIL