Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
J Community Genet ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814439

ABSTRACT

Previous research on family communication of cancer genetic test results has primarily focused on non-Hispanic White patients with high-risk pathogenic variants (PV). There are limited data on patient communication of moderate-risk PVs, variants of uncertain significance (VUS), and negative results. This qualitative study examined communication of positive, negative, and VUS hereditary cancer multi-gene panel (MGP) results in an ethnically and socioeconomically diverse population. As part of a multicenter, prospective cohort study of 2000 patients who underwent MGP testing at three hospitals in California, USA, free-text written survey responses to the question: "Feel free to share any thoughts or experiences with discussing genetic test results with others" were collected from participant questionnaires administered at 3 and 12-months post results disclosure. Content and thematic analyses were performed using a theory-driven analysis, Theory of Planned Behavior (TPB), on 256 responses from 214 respondents. Respondents with high perceived utility of sharing genetic test results often reported positive attitudes towards sharing test results and direct encouragement for genetic testing of others. Respondents with high self-efficacy in the sharing process were likely to report high perceived utility of sharing, whereas patients with low self-efficacy more often had VUS results and were more likely to report uncertainty about sharing. Consistent with TPB, our findings suggest that clinician reinforcement of the utility of genetic testing may increase intent for patients to communicate genetic information. Our findings suggest that clinicians should focus on strategies to improve patient understanding of VUS results.

2.
BMC Genomics ; 25(1): 409, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664626

ABSTRACT

OBJECTIVE: To evaluate the contribution of germline genetics to regulating the briskness and diversity of T cell responses in CRC, we conducted a genome-wide association study to examine the associations between germline genetic variation and quantitative measures of T cell landscapes in 2,876 colorectal tumors from participants in the Molecular Epidemiology of Colorectal Cancer Study (MECC). METHODS: Germline DNA samples were genotyped and imputed using genome-wide arrays. Tumor DNA samples were extracted from paraffin blocks, and T cell receptor clonality and abundance were quantified by immunoSEQ (Adaptive Biotechnologies, Seattle, WA). Tumor infiltrating lymphocytes per high powered field (TILs/hpf) were scored by a gastrointestinal pathologist. Regression models were used to evaluate the associations between each variant and the three T-cell features, adjusting for sex, age, genotyping platform, and global ancestry. Three independent datasets were used for replication. RESULTS: We identified a SNP (rs4918567) near RBM20 associated with clonality at a genome-wide significant threshold of 5 × 10- 8, with a consistent direction of association in both discovery and replication datasets. Expression quantitative trait (eQTL) analyses and in silico functional annotation for these loci provided insights into potential functional roles, including a statistically significant eQTL between the T allele at rs4918567 and higher expression of ADRA2A (P = 0.012) in healthy colon mucosa. CONCLUSIONS: Our study suggests that germline genetic variation is associated with the quantity and diversity of adaptive immune responses in CRC. Further studies are warranted to replicate these findings in additional samples and to investigate functional genomic mechanisms.


Subject(s)
Colorectal Neoplasms , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Tumor Microenvironment , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Male , Female , Middle Aged , Quantitative Trait Loci , Aged , Lymphocytes, Tumor-Infiltrating/immunology , Germ-Line Mutation , RNA-Binding Proteins/genetics , Genotype , Germ Cells/metabolism
3.
Front Immunol ; 14: 1268117, 2023.
Article in English | MEDLINE | ID: mdl-37942321

ABSTRACT

Objective: Reduced diversity at Human Leukocyte Antigen (HLA) loci may adversely affect the host's ability to recognize tumor neoantigens and subsequently increase disease burden. We hypothesized that increased heterozygosity at HLA loci is associated with a reduced risk of developing colorectal cancer (CRC). Methods: We imputed HLA class I and II four-digit alleles using genotype data from a population-based study of 5,406 cases and 4,635 controls from the Molecular Epidemiology of Colorectal Cancer Study (MECC). Heterozygosity at each HLA locus and the number of heterozygous genotypes at HLA class -I (A, B, and C) and HLA class -II loci (DQB1, DRB1, and DPB1) were quantified. Logistic regression analysis was used to estimate the risk of CRC associated with HLA heterozygosity. Individuals with homozygous genotypes for all loci served as the reference category, and the analyses were adjusted for sex, age, genotyping platform, and ancestry. Further, we investigated associations between HLA diversity and tumor-associated T cell repertoire features, as measured by tumor infiltrating lymphocytes (TILs; N=2,839) and immunosequencing (N=2,357). Results: Individuals with all heterozygous genotypes at all three class I genes had a reduced odds of CRC (OR: 0.74; 95% CI: 0.56-0.97, p= 0.031). A similar association was observed for class II loci, with an OR of 0.75 (95% CI: 0.60-0.95, p= 0.016). For class-I and class-II combined, individuals with all heterozygous genotypes had significantly lower odds of developing CRC (OR: 0.66, 95% CI: 0.49-0.87, p= 0.004) than those with 0 or one heterozygous genotype. HLA class I and/or II diversity was associated with higher T cell receptor (TCR) abundance and lower TCR clonality, but results were not statistically significant. Conclusion: Our findings support a heterozygote advantage for the HLA class-I and -II loci, indicating an important role for HLA genetic variability in the etiology of CRC.


Subject(s)
Colorectal Neoplasms , Histocompatibility Antigens Class I , Humans , Heterozygote , Gene Frequency , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class II/genetics , HLA Antigens , Colorectal Neoplasms/genetics , Receptors, Antigen, T-Cell/genetics
4.
Cureus ; 15(8): e43246, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37692727

ABSTRACT

Lynch syndrome is a hereditary colorectal cancer caused by mutations in DNA mismatch repair genes. Immune checkpoint therapies have shown promise in treating Lynch syndrome-associated cancers but can lead to immune-related adverse events, such as colitis. In this report, we present a severe case of immune-mediated colitis (IMC) induced by checkpoint inhibitors in a young patient with Lynch syndrome. This 20-year-old male with Lynch syndrome and a history of glioblastoma underwent dual checkpoint therapy, after initial treatment with systemic steroids. Despite this, his condition worsened, resulting in complications, such as toxic megacolon and small bowel obstruction. He was subjected to various treatments, including infliximab and vedolizumab, but ultimately required total abdominal colectomy with J-pouch creation. This case highlights the challenges of managing severe IMC in patients with Lynch syndrome. The patient's suboptimal response to standard treatments and the development of complications emphasizes the need for a better understanding and alternative therapeutic options for IMC. This case also calls into question whether a subset of patients with IMC should be "treated to target," even though the current standard of care for IMC is guided by symptom response, and if so, further research is necessary to identify potential therapeutic targets. Further research is also required to understand the mechanisms of IMC and develop effective treatment strategies tailored to patients with Lynch syndrome and immune-related adverse events.

5.
Fam Cancer ; 22(4): 437-448, 2023 10.
Article in English | MEDLINE | ID: mdl-37341816

ABSTRACT

Transgender and gender diverse (TGD) populations with hereditary cancer syndromes face unique obstacles to identifying and obtaining appropriate cancer surveillance and risk-reducing procedures. There is a lack of care provider knowledge about TGD health management. Lynch syndrome (LS) is one of the most common hereditary cancer syndromes, affecting an estimated 1 in 279 individuals. There are no clinical guidelines specific for TGD individuals with LS, highlighting a need to improve the quality of care for this population. There is an urgent need for cancer surveillance recommendations for TGD patients. This commentary provides recommendations for cancer surveillance, risk-reducing strategies, and genetic counseling considerations for TGD patients with LS.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , Transgender Persons , Humans , Transgender Persons/psychology , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Genetic Counseling
6.
Genet Med ; 25(7): 100837, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37057674

ABSTRACT

PURPOSE: The aim of this study was to describe the clinical impact of commercial laboratories issuing conflicting classifications of genetic variants. METHODS: Results from 2000 patients undergoing a multigene hereditary cancer panel by a single laboratory were analyzed. Clinically significant discrepancies between the laboratory-provided test reports and other major commercial laboratories were identified, including differences between pathogenic/likely pathogenic and variant of uncertain significance (VUS) classifications, via review of ClinVar archives. For patients carrying a VUS, clinical documentation was assessed for evidence of provider awareness of the conflict. RESULTS: Fifty of 975 (5.1%) patients with non-negative results carried a variant with a clinically significant conflict, 19 with a pathogenic/likely pathogenic variant reported in APC or MUTYH, and 31 with a VUS reported in CDKN2A, CHEK2, MLH1, MSH2, MUTYH, RAD51C, or TP53. Only 10 of 28 (36%) patients with a VUS with a clinically significant conflict had a documented discussion by a provider about the conflict. Discrepant counseling strategies were used for different patients with the same variant. Among patients with a CDKN2A variant or a monoallelic MUTYH variant, providers were significantly more likely to make recommendations based on the laboratory-reported classification. CONCLUSION: Our findings highlight the frequency of variant interpretation discrepancies and importance of clinician awareness. Guidance is needed on managing patients with discrepant variants to support accurate risk assessment.


Subject(s)
Genetic Variation , Neoplasms , Humans , Neoplasms/genetics , Laboratories , Genetic Testing/methods , Genetic Predisposition to Disease
7.
Cancers (Basel) ; 15(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36672340

ABSTRACT

Lynch syndrome (LS) is a hereditary cancer susceptibility condition associated with varying cancer risks depending on which of the five causative genes harbors a pathogenic variant; however, lifestyle and medical interventions provide options to lower those risks. We developed MyLynch, a patient-facing clinical decision support (CDS) web application that applies genetically-guided personalized medicine (GPM) for individuals with LS. The tool was developed in R Shiny through a patient-focused iterative design process. The knowledge base used to estimate patient-specific risk leveraged a rigorously curated literature review. MyLynch informs LS patients of their personal cancer risks, educates patients on relevant interventions, and provides patients with adjusted risk estimates, depending on the interventions they choose to pursue. MyLynch can improve risk communication between patients and providers while also encouraging communication among relatives with the goal of increasing cascade testing. As genetic panel testing becomes more widely available, GPM will play an increasingly important role in patient care, and CDS tools offer patients and providers tailored information to inform decision-making. MyLynch provides personalized cancer risk estimates and interventions to lower these risks for patients with LS.

8.
Genet Epidemiol ; 46(7): 395-414, 2022 10.
Article in English | MEDLINE | ID: mdl-35583099

ABSTRACT

Risk evaluation to identify individuals who are at greater risk of cancer as a result of heritable pathogenic variants is a valuable component of individualized clinical management. Using principles of Mendelian genetics, Bayesian probability theory, and variant-specific knowledge, Mendelian models derive the probability of carrying a pathogenic variant and developing cancer in the future, based on family history. Existing Mendelian models are widely employed, but are generally limited to specific genes and syndromes. However, the upsurge of multigene panel germline testing has spurred the discovery of many new gene-cancer associations that are not presently accounted for in these models. We have developed PanelPRO, a flexible, efficient Mendelian risk prediction framework that can incorporate an arbitrary number of genes and cancers, overcoming the computational challenges that arise because of the increased model complexity. We implement an 11-gene, 11-cancer model, the largest Mendelian model created thus far, based on this framework. Using simulations and a clinical cohort with germline panel testing data, we evaluate model performance, validate the reverse-compatibility of our approach with existing Mendelian models, and illustrate its usage. Our implementation is freely available for research use in the PanelPRO R package.


Subject(s)
Genetic Predisposition to Disease , Neoplasms , Bayes Theorem , Cohort Studies , Humans , Models, Genetic , Neoplasms/genetics
9.
Am J Gastroenterol ; 117(6): 846-864, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35471415

ABSTRACT

The gastrointestinal hamartomatous polyposis syndromes are rare, autosomal dominant disorders associated with an increased risk of benign and malignant intestinal and extraintestinal tumors. They include Peutz-Jeghers syndrome, juvenile polyposis syndrome, the PTEN hamartoma tumor syndrome (including Cowden's syndrome and Bannayan-Riley-Ruvalcaba syndrome), and hereditary mixed polyposis syndrome. Diagnoses are based on clinical criteria and, in some cases, confirmed by demonstrating the presence of a germline pathogenic variant. The best understood hamartomatous polyposis syndrome is Peutz-Jeghers syndrome, caused by germline pathogenic variants in the STK11 gene. The management is focused on prevention of bleeding and mechanical obstruction of the small bowel by polyps and surveillance of organs at increased risk for cancer. Juvenile polyposis syndrome is caused by a germline pathogenic variant in either the SMAD4 or BMPR1A genes, with differing clinical courses. Patients with SMAD4 pathogenic variants may have massive gastric polyposis, which can result in gastrointestinal bleeding and/or protein-losing gastropathy. Patients with SMAD4 mutations usually have the simultaneous occurrence of hereditary hemorrhagic telangiectasia (juvenile polyposis syndrome-hereditary hemorrhagic telangiectasia overlap syndrome) that can result in epistaxis, gastrointestinal bleeding from mucocutaneous telangiectasias, and arteriovenous malformations. Germline pathogenic variants in the PTEN gene cause overlapping clinical phenotypes (known as the PTEN hamartoma tumor syndromes), including Cowden's syndrome and related disorders that are associated with an increased risk of gastrointestinal and colonic polyposis, colon cancer, and other extraintestinal manifestations and cancers. Due to the relative rarity of the hamartomatous polyposis syndromes, recommendations for management are based on few studies. This US Multi-Society Task Force on Colorectal Cancer consensus statement summarizes the clinical features, assesses the current literature, and provides guidance for diagnosis, assessment, and management of patients with the hamartomatous polyposis syndromes, with a focus on endoscopic management.


Subject(s)
Colorectal Neoplasms , Hamartoma Syndrome, Multiple , Hamartoma , Intestinal Polyposis , Neoplastic Syndromes, Hereditary , Peutz-Jeghers Syndrome , Telangiectasia, Hereditary Hemorrhagic , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/therapy , Gastrointestinal Hemorrhage/complications , Hamartoma/complications , Hamartoma Syndrome, Multiple/complications , Hamartoma Syndrome, Multiple/diagnosis , Hamartoma Syndrome, Multiple/genetics , Humans , Intestinal Polyposis/complications , Intestinal Polyposis/congenital , Intestinal Polyposis/diagnosis , Intestinal Polyposis/genetics , Intestinal Polyps/complications , Neoplastic Syndromes, Hereditary/diagnosis , Neoplastic Syndromes, Hereditary/genetics , Neoplastic Syndromes, Hereditary/therapy , Peutz-Jeghers Syndrome/complications , Peutz-Jeghers Syndrome/diagnosis , Peutz-Jeghers Syndrome/genetics , Telangiectasia, Hereditary Hemorrhagic/complications
10.
Gastrointest Endosc ; 95(6): 1025-1047, 2022 06.
Article in English | MEDLINE | ID: mdl-35487765

ABSTRACT

The gastrointestinal hamartomatous polyposis syndromes are rare, autosomal dominant disorders associated with an increased risk of benign and malignant intestinal and extraintestinal tumors. They include Peutz-Jeghers syndrome, juvenile polyposis syndrome, the PTEN hamartoma tumor syndrome (including Cowden's syndrome and Bannayan-Riley-Ruvalcaba syndrome), and hereditary mixed polyposis syndrome. Diagnoses are based on clinical criteria and, in some cases, confirmed by demonstrating the presence of a germline pathogenic variant. The best understood hamartomatous polyposis syndrome is Peutz-Jeghers syndrome, caused by germline pathogenic variants in the STK11 gene. The management is focused on prevention of bleeding and mechanical obstruction of the small bowel by polyps and surveillance of organs at increased risk for cancer. Juvenile polyposis syndrome is caused by a germline pathogenic variant in either the SMAD4 or BMPR1A genes, with differing clinical courses. Patients with SMAD4 pathogenic variants may have massive gastric polyposis, which can result in gastrointestinal bleeding and/or protein-losing gastropathy. Patients with SMAD4 mutations usually have the simultaneous occurrence of hereditary hemorrhagic telangiectasia (juvenile polyposis syndrome-hereditary hemorrhagic telangiectasia overlap syndrome) that can result in epistaxis, gastrointestinal bleeding from mucocutaneous telangiectasias, and arteriovenous malformations. Germline pathogenic variants in the PTEN gene cause overlapping clinical phenotypes (known as the PTEN hamartoma tumor syndromes), including Cowden's syndrome and related disorders that are associated with an increased risk of gastrointestinal and colonic polyposis, colon cancer, and other extraintestinal manifestations and cancers. Due to the relative rarity of the hamartomatous polyposis syndromes, recommendations for management are based on few studies. This U.S. Multi-Society Task Force on Colorectal Cancer consensus statement summarizes the clinical features, assesses the current literature, and provides guidance for diagnosis, assessment, and management of patients with the hamartomatous polyposis syndromes, with a focus on endoscopic management.


Subject(s)
Colorectal Neoplasms , Hamartoma Syndrome, Multiple , Hamartoma , Intestinal Polyposis , Peutz-Jeghers Syndrome , Telangiectasia, Hereditary Hemorrhagic , Colorectal Neoplasms/complications , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Gastrointestinal Hemorrhage/complications , Hamartoma Syndrome, Multiple/complications , Hamartoma Syndrome, Multiple/diagnosis , Hamartoma Syndrome, Multiple/genetics , Humans , Intestinal Polyposis/complications , Intestinal Polyposis/congenital , Intestinal Polyposis/diagnosis , Intestinal Polyposis/genetics , Intestinal Polyps/complications , Neoplastic Syndromes, Hereditary , Peutz-Jeghers Syndrome/complications , Peutz-Jeghers Syndrome/diagnosis , Peutz-Jeghers Syndrome/genetics , Telangiectasia, Hereditary Hemorrhagic/complications
11.
Gastroenterology ; 162(7): 2063-2085, 2022 06.
Article in English | MEDLINE | ID: mdl-35487791

ABSTRACT

The gastrointestinal hamartomatous polyposis syndromes are rare, autosomal dominant disorders associated with an increased risk of benign and malignant intestinal and extraintestinal tumors. They include Peutz-Jeghers syndrome, juvenile polyposis syndrome, the PTEN hamartoma tumor syndrome (including Cowden's syndrome and Bannayan-Riley-Ruvalcaba syndrome), and hereditary mixed polyposis syndrome. Diagnoses are based on clinical criteria and, in some cases, confirmed by demonstrating the presence of a germline pathogenic variant. The best understood hamartomatous polyposis syndrome is Peutz-Jeghers syndrome, caused by germline pathogenic variants in the STK11 gene. The management is focused on prevention of bleeding and mechanical obstruction of the small bowel by polyps and surveillance of organs at increased risk for cancer. Juvenile polyposis syndrome is caused by a germline pathogenic variant in either the SMAD4 or BMPR1A genes, with differing clinical courses. Patients with SMAD4 pathogenic variants may have massive gastric polyposis, which can result in gastrointestinal bleeding and/or protein-losing gastropathy. Patients with SMAD4 mutations usually have the simultaneous occurrence of hereditary hemorrhagic telangiectasia (juvenile polyposis syndrome-hereditary hemorrhagic telangiectasia overlap syndrome) that can result in epistaxis, gastrointestinal bleeding from mucocutaneous telangiectasias, and arteriovenous malformations. Germline pathogenic variants in the PTEN gene cause overlapping clinical phenotypes (known as the PTEN hamartoma tumor syndromes), including Cowden's syndrome and related disorders that are associated with an increased risk of gastrointestinal and colonic polyposis, colon cancer, and other extraintestinal manifestations and cancers. Due to the relative rarity of the hamartomatous polyposis syndromes, recommendations for management are based on few studies. This U.S Multi-Society Task Force on Colorectal Cancer consensus statement summarizes the clinical features, assesses the current literature, and provides guidance for diagnosis, assessment, and management of patients with the hamartomatous polyposis syndromes, with a focus on endoscopic management.


Subject(s)
Colorectal Neoplasms , Hamartoma Syndrome, Multiple , Hamartoma , Intestinal Polyposis , Neoplastic Syndromes, Hereditary , Peutz-Jeghers Syndrome , Telangiectasia, Hereditary Hemorrhagic , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/therapy , Gastrointestinal Hemorrhage , Hamartoma Syndrome, Multiple/complications , Hamartoma Syndrome, Multiple/diagnosis , Hamartoma Syndrome, Multiple/genetics , Humans , Intestinal Polyposis/complications , Intestinal Polyposis/congenital , Intestinal Polyposis/diagnosis , Intestinal Polyposis/genetics , Intestinal Polyps , Neoplastic Syndromes, Hereditary/diagnosis , Neoplastic Syndromes, Hereditary/genetics , Neoplastic Syndromes, Hereditary/therapy , Peutz-Jeghers Syndrome/complications , Peutz-Jeghers Syndrome/diagnosis , Peutz-Jeghers Syndrome/genetics
13.
Clin Transl Gastroenterol ; 12(2): e00307, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33617188

ABSTRACT

INTRODUCTION: Recent studies indicate low rates of follow-up colonoscopy after abnormal fecal immunochemical testing (FIT) within safety net health systems. A patient navigation (PN) program is an evidence-based strategy that has been shown to improve colonoscopy completion in private and public healthcare settings. The aim of this study was to evaluate the effectiveness of a PN program to encourage follow-up colonoscopy after abnormal FIT within a large safety net hospital system. METHODS: We established an enterprisewide PN program at 5 tertiary care hospitals within the Los Angeles County Department of Health Services system in 2018. The PN assisted adult patients aged 50-75 years with an abnormal FIT to a follow-up colonoscopy within 6 months. PN activities included initiating referral for and scheduling of colonoscopy, performing reminder phone calls to patient for their upcoming colonoscopy, and following up with patients who did not attend their colonoscopy. We assess the effectiveness of the PN intervention by comparing follow-up colonoscopy rates with a period before the intervention. RESULTS: There were 2,531 patients with abnormal FIT results (n = 1,214 in 2017 and n = 1,317 in 2018). A majority were women (55% in 2017 vs 52% in 2018) with a mean age of 60 ± 6.2 years. From a previous mean of 163 days without PN in 2017, the mean time from abnormal FIT to colonoscopy with PN improved to 113 days in 2018. The frequency of colonoscopy completion with PN increased from 40.6% (n = 493) in 2017 to 46% (n = 600) in 2018. DISCUSSION: After the introduction of the PN program, there was a significant increase in patients undergoing follow-up colonoscopy after abnormal FIT and patients were more likely to undergo colonoscopy within the recommended 6 months.


Subject(s)
Colonoscopy , Immunochemistry , Patient Acceptance of Health Care , Patient Navigation , Referral and Consultation , Aged , California , Colonoscopy/statistics & numerical data , Female , Health Services Accessibility , Humans , Male , Middle Aged , Occult Blood , Patient Acceptance of Health Care/statistics & numerical data , Patient Navigation/methods , Reminder Systems , Time Factors , Travel
14.
Cancer ; 127(8): 1275-1285, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33320347

ABSTRACT

BACKGROUND: Little is known about the psychological outcomes of germline multigene panel testing, particularly among diverse patients and those with moderate-risk pathogenic variants (PVs). METHODS: Study participants (N = 1264) were counseled and tested with a 25- or 28-gene panel and completed a 3-month postresult survey including the Multidimensional Impact of Cancer Risk Assessment (MICRA). RESULTS: The mean age was 52 years, 80% were female, and 70% had cancer; 45% were non-Hispanic White, 37% were Hispanic, 10% were Asian, 3% were Black, and 5% had another race/ethnicity. Approximately 28% had a high school education or less, and 23% were non-English-speaking. The genetic test results were as follows: 7% had a high-risk PV, 6% had a moderate-risk PV, 35% had a variant of uncertain significance (VUS), and 52% were negative. Most participants (92%) had a total MICRA score ≤ 38, which corresponded to a mean response of "never," "rarely," or only "sometimes" reacting negatively to results. A multivariate analysis found that mean total MICRA scores were significantly higher (more uncertainty/distress) among high- and moderate-risk PV carriers (29.7 and 24.8, respectively) than those with a VUS or negative results (17.4 and 16.1, respectively). Having cancer or less education was associated with a significantly higher total MICRA score; race/ethnicity was not associated with the total MICRA score. High- and moderate-risk PV carriers did not differ significantly from one another in the total MICRA score, uncertainty, distress, or positive experiences. CONCLUSIONS: In a diverse population undergoing genetic counseling and multigene panel testing for hereditary cancer risk, the psychological response corresponded to test results and showed low distress and uncertainty. Further studies are needed to assess patient understanding and subsequent cancer screening among patients from diverse backgrounds. LAY SUMMARY: Multigene panel tests for hereditary cancer have become widespread despite concerns about adverse psychological reactions among carriers of moderate-risk pathogenic variants (mutations) and among carriers of variants of uncertain significance. This large study of an ethnically and economically diverse cohort of patients undergoing panel testing found that 92% "never," "rarely," or only "sometimes" reacted negatively to results. Somewhat higher uncertainty and distress were identified among carriers of high- and moderate-risk pathogenic variants, and lower levels were identified among those with a variant of uncertain significance or a negative result. Although the psychological response corresponded to risk, reactions to testing were favorable, regardless of results.


Subject(s)
Genetic Counseling/psychology , Genetic Testing/methods , Germ Cells , Neoplasms/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Asian People/statistics & numerical data , Black People/statistics & numerical data , Cohort Studies , Female , Genetic Carrier Screening , Hispanic or Latino/statistics & numerical data , Humans , Male , Middle Aged , Neoplasms/ethnology , Neoplasms/psychology , Psychological Distress , Risk Assessment/ethnology , Socioeconomic Factors , Uncertainty , White People/statistics & numerical data , Young Adult
15.
Gastroenterology ; 160(6): 2189-2190, 2021 05.
Article in English | MEDLINE | ID: mdl-32621902
16.
Gynecol Oncol ; 159(3): 869-876, 2020 12.
Article in English | MEDLINE | ID: mdl-33032822

ABSTRACT

OBJECTIVE: Pathogenic variations in the homologous recombination (HR) gene, BRCA1 interacting protein C-terminal helicase 1 (BRIP1) increase the risk for ovarian cancer. PARP inhibitors (PARPi) exert a synthetic lethal effect in BRCA-mutated ovarian cancers. Effective HR requires cooperation between BRCA1 and BRIP1; therefore, BRIP1-incompetancy may predict vulnerability to synthetic lethality. Here we investigated the response of ovarian epithelial cells with defective BRIP1 function to PARPi, and compared these cells to those lacking BRCA1 activity. METHODS: We engineered Chinese Hamster ovarian (CHO) epithelial cells to express deficient BRIP1 or BRCA1, and exposed them to olaparib with or without carboplatin or cisplatin. We assessed cellular proliferation and survival; we calculated inhibitory concentrations and combination and reduction drug indices. RESULTS: BRIP1 and BRCA1 inactivation impedes HR activity, decreases cellular proliferation and compromises DNA damage recovery. Platinum agent exposure impairs cellular survival. Olaparib exposure alone decreases cell viability in BRCA1-deficient cells, although has no effect on BRIP1-deficient cells. Combining carboplatin or cisplatin with olaparib synergistically attenuates cellular survival, consistent with synthetic lethality. CONCLUSIONS: BRIP1-deficient ovarian epithelial cells exhibit defective HR, resulting in synthetic lethality when exposed to a platinum agent/PARPi combination. PARPi alone had no effect; this lack of effect may result from distinguishing molecular properties of BRIP1and/or consequences of genomic background. Our study identifies altered BRIP1 as a target for precision medicine-based therapies for ovarian cancers. This investigation supports consideration of the use of a platinum agent/PARPi combination in ovarian cancers depending upon genetic profile and genomic background.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Fanconi Anemia Complementation Group Proteins/genetics , Ovarian Neoplasms/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , RNA Helicases/genetics , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , BRCA1 Protein/genetics , CHO Cells , Carboplatin/pharmacology , Carboplatin/therapeutic use , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Survival/drug effects , Cell Survival/genetics , Cisplatin/pharmacology , Cisplatin/therapeutic use , Cricetulus , Drug Synergism , Fanconi Anemia Complementation Group Proteins/deficiency , Female , Humans , Molecular Targeted Therapy/methods , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Phthalazines/pharmacology , Phthalazines/therapeutic use , Piperazines/pharmacology , Piperazines/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Precision Medicine/methods , RNA Helicases/deficiency , Recombinational DNA Repair/drug effects , Synthetic Lethal Mutations/drug effects
17.
PLoS Med ; 17(9): e1003292, 2020 09.
Article in English | MEDLINE | ID: mdl-32970670

ABSTRACT

BACKGROUND: Identifying stage II patients with colorectal cancer (CRC) at higher risk of progression is a clinical priority in order to optimize the advantages of adjuvant chemotherapy while avoiding unnecessary toxicity. Recently, the intensity and the quality of the host immune response in the tumor microenvironment have been reported to have an important role in tumorigenesis and an inverse association with tumor progression. This association is well established in microsatellite instable CRC. In this work, we aim to assess the usefulness of measures of T-cell infiltration as prognostic biomarkers in 640 stage II, CRC tumors, 582 of them confirmed microsatellite stable. METHODS AND FINDINGS: We measured both the quantity and clonality index of T cells by means of T-cell receptor (TCR) immunosequencing in a discovery dataset (95 patients with colon cancer diagnosed at stage II and microsatellite stable, median age 67, 30% women) and replicated the results in 3 additional series of stage II patients from 2 countries. Series 1 and 2 were recruited in Barcelona, Spain and included 112 fresh frozen (FF, median age 69, 44% women) and 163 formalin-fixed paraffin-embedded (FFPE, median age 67, 39% women) samples, respectively. Series 3 included 270 FFPE samples from patients recruited in Haifa, Northern Israel, as part of a large case-control study of CRC (median age 73, 46% women). Median follow-up time was 81.1 months. Cox regression models were fitted to evaluate the prognostic value of T-cell abundance and Simpson clonality of TCR variants adjusting by sex, age, tumor location, and stage (IIA and IIB). In the discovery dataset, higher TCR abundance was associated with better prognosis (hazard ratio [HR] for ≥Q1 = 0.25, 95% CI 0.10-0.63, P = 0.003). A functional analysis of gene expression on these tumors revealed enrichment in pathways related to immune response. Higher values of clonality index (lower diversity) were not associated with worse disease-free survival, though the HR for ≥Q3 was 2.32 (95% CI 0.90-5.97, P = 0.08). These results were replicated in an independent FF dataset (TCR abundance: HR = 0.30, 95% CI 0.12-0.72, P = 0.007; clonality: HR = 3.32, 95% CI 1.38-7.94, P = 0.007). Also, the association with prognosis was tested in 2 independent FFPE datasets. The same association was observed with TCR abundance (HR = 0.41, 95% CI 0.18-0.93, P = 0.03 and HR = 0.56, 95% CI 0.31-1, P = 0.042, respectively, for each FFPE dataset). However, the clonality index was associated with prognosis only in the FFPE dataset from Israel (HR = 2.45, 95% CI 1.39-4.32, P = 0.002). Finally, a combined analysis combining all microsatellite stable (MSS) samples demonstrated a clear prognosis value both for TCR abundance (HR = 0.39, 95% CI 0.26-0.57, P = 1.3e-06) and the clonality index (HR = 2.13, 95% CI 1.44-3.15, P = 0.0002). These associations were also observed when variables were considered continuous in the models (HR per log2 of TCR abundance = 0.85, 95% CI 0.78-0.93, P = 0.0002; HR per log2 or clonality index = 1.16, 95% CI 1.03-1.31, P = 0.016). LIMITATIONS: This is a retrospective study, and samples had been preserved with different methods. Validation series lack complete information about microsatellite instability (MSI) status and pathology assessment. The Molecular Epidemiology of Colorectal Cancer (MECC) study had information about overall survival instead of progression-free survival. CONCLUSION: Results from this study demonstrate that tumor lymphocytes, assessed by TCR repertoire quantification based on a sequencing method, are an independent prognostic factor in microsatellite stable stage II CRC.


Subject(s)
Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , Microsatellite Repeats/genetics , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor , Case-Control Studies , Chemotherapy, Adjuvant , Colorectal Neoplasms/metabolism , Disease Progression , Disease-Free Survival , Female , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Male , Microsatellite Instability , Microsatellite Repeats/immunology , Middle Aged , Mutation , Neoplasm Staging , Prognosis , Proportional Hazards Models , Retrospective Studies , Spain , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
18.
Sci Rep ; 10(1): 3360, 2020 02 25.
Article in English | MEDLINE | ID: mdl-32099066

ABSTRACT

Tumor-infiltrating lymphocytes (TILs) are an important histopathologic feature of colorectal cancer that confer prognostic information. Previous clinical and epidemiologic studies have found that the presence and quantification of tumor-infiltrating lymphocytes are significantly associated with disease-specific and overall survival in colorectal cancer. We performed a systematic review and meta-analysis, establishing pooled estimates for survival outcomes based on the presence of TILs in colon cancer. PubMed (Medline), Embase, Cochrane Library, Web of Science, and ClinicalTrials.gov were searched from inception to April 2017. Studies were included, in which the prognostic significance of intratumoral tumor infiltrating lymphocytes, as well as subsets of CD3, CD8, FOXP3, CD45R0 lymphocytes, were determined within the solid tumor center, the invasive margin, and tumor stroma. Random-effects models were calculated to estimated summary effects using hazard ratios. Forty-three relevant studies describing 21,015 patients were included in our meta-analysis. The results demonstrate that high levels of generalized TILS as compared to low levels had an improved overall survival (OS) with a HR of 0.65 (p = <0.01). In addition, histologically localized CD3+ T-cells at the tumor center were significantly associated with better disease-free survival (HR = 0.46, 95% CI 0.36-0.61, p = 0.05), and CD3 + cells at the invasive margin were associated with improved disease-free survival (HR = 0.57, 95% CI 0.38-0.86, p = 0.05). CD8+ T-cells at the tumor center had statistically significant prognostic value on cancer-specific survival and overall survival with HRs of 0.65 (p = 0.02) and 0.71 (p < 0.01), respectively. Lastly, FOXP3+ T-cells at the tumor center were associated with improved prognosis for cancer-specific survival (HR = 0.65, p < 0.01) and overall survival (HR = 0.70, p < 0.01). These findings suggest that TILs and specific TIL subsets serve as prognostic biomarkers for colorectal cancer.


Subject(s)
Colorectal Neoplasms/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Prognosis , Adult , Aged , Aged, 80 and over , CD8-Positive T-Lymphocytes/immunology , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/pathology , Disease-Free Survival , Female , Humans , Lymphocytes, Tumor-Infiltrating/pathology , Male , Middle Aged , Proportional Hazards Models
19.
Nat Commun ; 10(1): 5681, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31831743

ABSTRACT

Aberrant autophagy is a major risk factor for inflammatory diseases and cancer. However, the genetic basis and underlying mechanisms are less established. UVRAG is a tumor suppressor candidate involved in autophagy, which is truncated in cancers by a frameshift (FS) mutation and expressed as a shortened UVRAGFS. To investigate the role of UVRAGFS in vivo, we generated mutant mice that inducibly express UVRAGFS (iUVRAGFS). These mice are normal in basal autophagy but deficient in starvation- and LPS-induced autophagy by disruption of the UVRAG-autophagy complex. iUVRAGFS mice display increased inflammatory response in sepsis, intestinal colitis, and colitis-associated cancer development through NLRP3-inflammasome hyperactivation. Moreover, iUVRAGFS mice show enhanced spontaneous tumorigenesis related to age-related autophagy suppression, resultant ß-catenin stabilization, and centrosome amplification. Thus, UVRAG is a crucial autophagy regulator in vivo, and autophagy promotion may help prevent/treat inflammatory disease and cancer in susceptible individuals.


Subject(s)
Autophagy/genetics , Carcinogenesis/genetics , Inflammation/genetics , Mutation , Tumor Suppressor Proteins/genetics , Animals , Carcinogenesis/pathology , Cell Proliferation , Centrosome , Colitis , Colonic Neoplasms/pathology , Colorectal Neoplasms/genetics , Female , Frameshift Mutation , Inflammasomes , Lipopolysaccharides/adverse effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Sepsis , Starvation , Toll-Like Receptor 4/metabolism
20.
JCO Precis Oncol ; 32019 Mar.
Article in English | MEDLINE | ID: mdl-34322651

ABSTRACT

PURPOSE: Multiplex gene panel testing (MGPT) allows for the simultaneous analysis of germline cancer susceptibility genes. This study describes the diagnostic yield and patient experiences of MGPT in diverse populations. PATIENTS AND METHODS: This multicenter, prospective cohort study enrolled participants from three cancer genetics clinics-University of Southern California Norris Comprehensive Cancer Center, Los Angeles County and University of Southern California Medical Center, and Stanford Cancer Institute-who met testing guidelines or had a 2.5% or greater probability of a pathogenic variant (N = 2,000). All patients underwent 25- or 28-gene MGPT and results were compared with differential genetic diagnoses generated by pretest expert clinical assessment. Post-test surveys on distress, uncertainty, and positive experiences were administered at 3 months (69% response rate) and 1 year (57% response rate). RESULTS: Of 2,000 participants, 81% were female, 41% were Hispanic, 26% were Spanish speaking only, and 30% completed high school or less education. A total of 242 participants (12%) carried one or more pathogenic variant (positive), 689 (34%) carried one or more variant of uncertain significance (VUS), and 1,069 (53%) carried no pathogenic variants or VUS (negative). More than one third of pathogenic variants (34%) were not included in the differential diagnosis. After testing, few patients (4%) had prophylactic surgery, most (92%) never regretted testing, and most (80%) wanted to know all results, even those of uncertain significance. Positive patients were twice as likely as negative/VUS patients (83% v 41%; P < .001) to encourage their relatives to be tested. CONCLUSION: In a racially/ethnically and socioeconomically diverse cohort, MGPT increased diagnostic yield. More than one third of identified pathogenic variants were not clinically anticipated. Patient regret and prophylactic surgery use were low, and patients appropriately encouraged relatives to be tested for clinically relevant results.

SELECTION OF CITATIONS
SEARCH DETAIL
...