Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Nanoscale Adv ; 5(21): 5829-5837, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37881719

ABSTRACT

Binding energies, AIMD simulation and phonon spectra confirm both the thermal and dynamical stabilities of model-I and model-II of MSSe-PtO2 (M = Mo, W) vdWHs. An indirect type-II band alignment in both the models of MSSe-PtO2 vdWHs and a larger Rashba spin splitting in model-II than in model-I provide a platform for experimental design of MSSe-PtO2 vdWHs for optoelectronics and spintronic device applications. Transfer of electrons from the MSSe layer to the PtO2 layer at the interface of MSSe-PtO2 vdWHs makes MSSe (PtO2) p(n)-type. Large absorption in the visible region of MoSSe-PtO2 vdWHs, while blue shifts in WSSe-PtO2 vdWHs are observed. In the case of model-II of MSSe-PtO2 vdWHs, a further blue shift is observed. Furthermore, the photocatalytic response shows that MSSe-PtO2 vdWHs cross the standard water redox potentials confirming their capability to split water into H+/H2 and O2/H2O.

2.
RSC Adv ; 13(17): 11546, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37063724

ABSTRACT

[This corrects the article DOI: 10.1039/D1RA06011B.].

3.
Nanoscale Adv ; 5(5): 1405-1415, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36866260

ABSTRACT

Using DFT, the electronic structure, optical, and photocatalytic properties of PN (P = Ga, Al) and M2CO2 (M = Ti, Zr, Hf) monolayers and their PN-M2CO2 van der Waals heterostructures (vdWHs) are investigated. Optimized lattice parameters, bond length, bandgap, conduction and valence band edges show the potential of PN (P = Ga, Al) and M2CO2 (M = Ti, Zr, Hf) monolayers in photocatalytic applications, and the application of the present approach to combine these monolayers and form vdWHs for efficient electronic, optoelectronic and photocatalytic applications is shown. Based on the same hexagonal symmetry and experimentally achievable lattice mismatch of PN (P = Ga, Al) with M2CO2 (M = Ti, Zr, Hf) monolayers, we have fabricated PN-M2CO2 vdWHs. Binding energies, interlayer distance and AIMD calculations show the stability of PN-M2CO2 vdWHs and demonstrate that these materials can be easily fabricated experimentally. The calculated electronic band structures show that all the PN-M2CO2 vdWHs are indirect bandgap semiconductors. Type-II[-I] band alignment is obtained for GaN(AlN)-Ti2CO2[GaN(AlN)-Zr2CO2 and GaN(AlN)-Hf2CO2] vdWHs. PN-Ti2CO2 (PN-Zr2CO2) vdWHs with a PN(Zr2CO2) monolayer have greater potential than a Ti2CO2(PN) monolayer, indicating that charge is transfer from the Ti2CO2(PN) to PN(Zr2CO2) monolayer, while the potential drop separates charge carriers (electron and holes) at the interface. The work function and effective mass of the carriers of PN-M2CO2 vdWHs are also calculated and presented. A red (blue) shift is observed in the position of excitonic peaks from AlN to GaN in PN-Ti2CO2 and PN-Hf2CO2 (PN-Zr2CO2) vdWHs, while significant absorption for photon energies above 2 eV for AlN-Zr2CO2, GaN-Ti2CO2 and PN-Hf2CO2, give them good optical profiles. The calculated photocatalytic properties demonstrate that PN-M2CO2 (P = Al, Ga; M = Ti, Zr, Hf) vdWHs are the best candidates for photocatalytic water splitting.

4.
RSC Adv ; 13(14): 9624-9635, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36968037

ABSTRACT

Vertical stacking of two-dimensional materials into layered van der Waals heterostructures is considered favourable for nanoelectronics and thermoelectric applications. In this work, we investigate the structural, electronic and thermoelectric properties of GeC and Janus monolayers MXO (M = Ti, Zr; X = S, Se) and their van der Waals (vdW) heterostructures using first-principles calculations. The values of binding energies, interlayer distances and thermal stability confirm the stability of these vdW heterostructures. The calculated band structure shows that GeC monolayer have a direct band gap while MXO (M = Ti, Zr; X = S, Se) and their van der Waals heterostructures show indirect band nature. Partial density of states confirms the type-II band alignment of GeC-MXY vdW heterostructures. Our results shows that ZrSeO (GeC) monolayers and GeC-ZrSO vdW heterostructures have higher power factor, making them promising for thermoelectric device applications.

5.
Nanoscale Adv ; 5(6): 1816, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36926571

ABSTRACT

[This corrects the article DOI: 10.1039/D3NA00017F.].

6.
Nanoscale Adv ; 4(17): 3557-3565, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36134356

ABSTRACT

The strategy of stacking two-dimensional materials for designing van der Waals heterostructures has gained tremendous attention in realizing innovative device applications in optoelectronics and renewable energy sources. Here, we performed the first principles calculations of the geometry, optoelectronic and photocatalytic performance of MS2-CrSSe (M = Mo, W) vdW heterostructures. The mirror asymmetry in the Janus CrSSe system allows the designing of two models of the MS2-CrSSe system by replacing S/Se atoms at opposite surfaces in CrSSe. The feasible configurations of both models of the MS2-CrSSe system are found energetically, dynamically and thermally stable. The studied heterobilayers possess an indirect type-I band alignment, indicating that the recombination of photogenerated electrons and holes in the CrSSe monolayer is hence crucial for photodetectors and laser applications. Remarkably, a red-shift in the optical absorption spectra of MS2-CrSSe makes them potential candidates for light harvesting applications. More interestingly, all heterobilayers (except W(Mo)S2-CrSSe of model-I(II)) reveal appropriate band edge positions of the oxidation and reduction potentials of the photocatalysis of water dissociation into H+/H2 and O2/H2O at pH = 0. These results shed light on the practical design of the MS2-CrSSe system for efficient optoelectronic and photocatalytic water splitting applications.

7.
RSC Adv ; 12(20): 12292-12302, 2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35480342

ABSTRACT

Using (hybrid) first principles calculations, the electronic band structure, type of Schottky contact and Schottky barrier height established at the interface of the most stable stacking patterns of the CS-MX2 (M = Mo, W; X = S, Se, Te) and CS-MXY ((X ≠ Y) = S, Se, Te) MS vdWH are investigated. The electronic band structures of CS-MX2 and CS-MXY MS vdWH seem to be simple sum of CS, MX2 and MXY monolayers. The projected electronic properties of the CS, MX2 and MXY layers are well preserved in CS-MX2 and CS-MXY MS vdWH. Their smaller effective mass (higher carrier mobility) render promising prospects of CS-WS2 and CS-MoSeTe as compared to other MS vdWH in nanoelectronic and optoelectronic devices, such as a high efficiency solar cell. In addition, we found that the effective mass of holes is higher than that of electrons, suggesting that these heterostructures can be utilized for hole/electron separation. Interestingly, the MS contact led to the formation of a Schottky contact or ohmic contact, therefore we have used the Schottky Mott rule to calculate the Schottky barrier height (SBH) of CS-MX2 (M = Mo, W; X = S, Se, Te) and CS-MXY ((X ≠ Y) = S, Se, Te) MS vdWH. It was found that CS-MX2 (M = Mo, W; X = S, Se, Te) and CS-MXY ((X ≠ Y) = S, Se, Te) (in both model-I and -II) MS vdWH form p-type Schottky contacts. These p-type Schottky contacts can be considered a promising building block for high-performance photoresponsive optoelectronic devices, p-type electronics, CS-based contacts, and for high-performance electronic devices.

8.
RSC Adv ; 12(18): 11202-11206, 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35425062

ABSTRACT

Low cost and highly efficient two dimensional materials as photocatalysts are gaining much attention to utilize solar energy for water splitting and produce hydrogen fuel as an alternative to deal with the energy crisis and reduce environmental hazards. First principles calculations are performed to investigate the electronic, optical and photocatalytic properties of novel two dimensional transition metal dipnictide XP2 (X = Ti, Zr, Hf) monolayers. The studied single layer XP2 is found to be dynamically and thermally stable. TiP2, ZrP2 and HfP2 systems exhibit semiconducting nature with moderate indirect band gap values of 1.72 eV, 1.43 eV and 2.02 eV, respectively. The solar light absorption is found to be in energy range of 1.65-3.3 eV. All three XP2 systems (at pH = 7) and the HfP2 monolayer (at pH = 0) that straddle the redox potentials, are promising candidates for the water splitting reaction. These findings enrich the two dimensional family and provide a platform to design novel devices for emerging optoelectronic and photovoltaic applications.

9.
RSC Adv ; 11(52): 32996-33003, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-35493575

ABSTRACT

The vertical stacking of two-dimensional materials via van der Waals (vdW) interaction is a promising technique for tailoring the physical properties and fabricating potential devices to be applied in the emerging fields of materials science and nanotechnology. The structural, electronic and optical properties and photocatalytic performance of a GaN-SiS vdW heterostructure were explored using first principles calculations. The most stable stacking configuration found energetically stable, possesses a direct staggered band gap, which is crucial for separating photogenerated charged carriers in different constituents and is efficacious for solar cells. Further, the charge transfer occurred from the SiS to GaN layer, indicating that SiS exhibits p-type doping in the GaN-SiS heterobilayer. Interestingly, a systematic red-shift was observed in the optical absorption spectra of the understudy heterobilayer system. Moreover, the conduction band edge and valence band edge of the monolayers and corresponding heterostructure were located above and below the standard redox potentials for photocatalytic water splitting, making these systems promising for water dissociation for hydrogen fuel production. The results provide a route to design the GaN-SiS vdW heterostructure for the practical realization of next-generation light detection and energy harvesting devices.

10.
RSC Adv ; 11(20): 12189-12199, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-35423756

ABSTRACT

Using first-principles calculations, the geometry, electronic structure, optical and photocatalytic performance of blueP and XYO (X = Ti, Zr, Hf; Y = S, Se) monolayers and their corresponding van der Waal heterostructures in three possible stacking patterns, are investigated. BlueP and XYO (X = Ti, Zr, Hf; Y = S, Se) monolayers are indirect bandgap semiconductors. A tensile strain of 8(10)% leads to TiSeO(ZrSeO) monolayers transitioning to a direct bandgap of 1.30(1.61) eV. The calculated binding energy and AIMD simulation show that unstrained(strained) blueP and XYO (X = Ti, Zr, Hf; Y = S, Se) monolayers and their heterostructures are thermodynamically stable. Similar to the corresponding monolayers, blueP-XYO (X = Ti, Zr, Hf: Y = S, Se) vdW heterostructures in three possible stacking patterns are indirect bandgap semiconductors with staggered band alignment, except blueP-TiSeO vdW heterostructure, which signifies straddling band alignment. Absorption spectra show that optical transitions are dominated by excitons for blueP and XYO (X = Ti, Zr, Hf; Y = S, Se) monolayers and the corresponding vdW heterostructures. Both E VB and E CB in TiSO, ZrSO, ZrSeO and HfSO monolayers achieve energetically favorable positions, and therefore, are suitable for water splitting at pH = 0, while TiSeO and HfSeO monolayers showed good response for reduction and fail to oxidise water. All studied vdW heterostructures also show good response to any produced O2, while specific stacking reduces H+ to H2.

11.
RSC Adv ; 11(24): 14263-14268, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-35423989

ABSTRACT

Designing van der Waals (vdW) heterostructures of two-dimensional materials is an efficient way to realize amazing properties as well as open up opportunities for applications in solar energy conversion, nanoelectronic and optoelectronic devices. The electronic structures and optical and photocatalytic properties of SiS, P and SiC van der Waals (vdW) heterostructures are investigated by (hybrid) first-principles calculations. Both binding energy and thermal stability spectra calculations confirm the stability of these heterostructures. Similar to the corresponding parent monolayers, SiS-P (SiS-SiC) vdW heterostructures are found to be indirect type-II bandgap semiconductors. Furthermore, absorption spectra are calculated to understand the optical behavior of these systems, where the lowest energy transitions lie in the visible region. The valence and conduction band edges straddle the standard redox potentials of SiS, P and SiC vdW heterostructures, making them promising candidates for water splitting in acidic solution.

12.
RSC Adv ; 12(1): 42-52, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-35424496

ABSTRACT

Using density functional (DFT) theory calculations, we have investigated the electronic band structure, optical and photocatalytic response of BSe, M2CO2 (M = Ti, Zr, Hf) monolayers and their corresponding BSe-M2CO2 (M = Ti, Zr, Hf) van der Waals (vdW) heterostructures. Optimized lattice constant, bond length, band structure and bandgap values, effective mass of electrons and holes, work function and conduction and valence band edge potentials of BSe and M2CO2 (M = Ti, Zr, Hf) monolayers are in agreement with previously available data. Binding energies, interlayer distance and Ab initio molecular dynamic simulations (AIMD) calculations show that BSe-M2CO2 (M = Ti, Zr, Hf) vdW heterostructures are stable with specific stacking and demonstrate that these heterostructures might be synthesized in the laboratory. The electronic band structure shows that all the studied vdW heterostructures have indirect bandgap nature - with the CBM and VBM at the Γ-K and Γ-point of BZ for BSe-Ti2CO2, respectively; while for BSe-Zr2CO2 and BSe-Hf2CO2 vdW heterostructures the CBM and VBM lie at the K-point and Γ-point of BZ, respectively. Type-II band alignment in BSe-M2CO2 (M = Ti, Zr, Hf) vdW heterostructures prevent the recombination of electron-hole pairs, and hence are crucial for light harvesting and detection. Absorption spectra are investigated to understand the optical behavior of BSe-M2CO2 (M = Ti, Zr, Hf) vdW heterostructures, where the lowest energy transitions are dominated by excitons. Furthermore, BSe-M2CO2 (M = Ti, Zr, Hf) vdW heterostructures are found to be potential photocatalysts for water splitting at pH = 0, and exhibit enhanced optical properties in the visible light zones.

13.
Phys Chem Chem Phys ; 22(36): 20704-20711, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32901640

ABSTRACT

The geometric structure, electronic, optical and photocatalytic properties of MSSe-g-GaN (M = Mo, W) van der Waals (vdW) heterostructures are investigated by performing first-principles calculations. We find that the MoSSe-g-GaN heterostructure exhibits type-II band alignment for all stacking patterns. While the WSSe-g-GaN heterostructure forms the type-II or type-I band alignment for the stacking model-I or model II, respectively. The average electrostatic potential shows that the potential of g-GaN is deeper than the MSSe monolayer, leading to the formation of an electrostatic field across the interface, causing the transfer of photogenerated electrons and holes. Efficient interfacial formation of interface and charge transfer reduce the work function of MSSe-g-GaN vdW heterostructures as compared to the constituent monolayer. The difference in the carrier mobility for electrons and holes suggests that these heterostructures could be utilized for hole/electron separation. Absorption spectra demonstrate that strong absorption from infrared to visible light in these vdW heterostructures can be achieved. Appropriate valence and conduction band edge positions with standard redox potentials provide enough force to drive the photogenerated electrons and holes to dissociate water into H+/H2 and O2/H2O at pH = 0.

14.
Phys Chem Chem Phys ; 22(18): 10351-10359, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32365147

ABSTRACT

Vertical stacking of two-dimensional materials into layered van der Waals heterostructures has recently been considered as a promising candidate for photocatalytic and optoelectronic devices because it can combine the advantages of the individual 2D materials. Janus transition metal dichalcogenides (JTMDCs) have emerged as an appealing photocatalytic material due to the desirable electronic properties. Hence, in this work, we systematically investigate the geometric features, electronic properties, charge density difference, work function, band alignment and photocatalytic properties of ZnO-JTMDC heterostructures using first-principles calculations. Due to the different kinds of chalcogen atoms on both sides of JTMDC monolayers, two different possible stacking patterns of ZnO-JTMDC heterostructures have been constructed and considered. We find that all these stacking patterns of ZnO-JTMDC heterostructures are dynamically and energetically feasible. Moreover, both ZnO-MoSSe and ZnO-WSSe heterostructures are indirect band gap semiconductors and present type-I and type-II band alignments for model-I and model-II, respectively. The Rashba spin polarization of the ZnO-WSSe heterostructure for model-I is greater than that in the others. Furthermore, valence (conduction) band edge potentials are calculated to understand the photocatalytic behavior of these systems. Energetically favorable band edge positions in ZnO-Janus heterostructures make them suitable for water splitting at zero pH. We found that the ZnO-Janus heterostructures are promising candidates for water splitting with conduction and valence band edges positioned just outside of the redox interval.

15.
Phys Chem Chem Phys ; 22(15): 7952-7961, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32232260

ABSTRACT

Constructing vertical heterostructures by placing graphene (Gr) on two-dimensional materials has recently emerged as an effective way to enhance the performance of nanoelectronic and optoelectronic devices. In this work, first principles calculations are employed to explore the structural and electronic properties of Gr/GeC and Gr/functionalized-GeC by H/F/Cl surface functionalization. Our results imply that the electronic properties of the Gr, GeC and all functionalized-GeC monolayers are well preserved in Gr/GeC and Gr/functionalized-GeC heterostructures, and the Gr/GeC heterostructure forms a p-type Schottky contact. Interestingly, we find that the p-type Schottky contact in Gr/GeC can be converted into the n-type one and into an n-type ohmic contact by H/F/Cl surface functionalization to form Gr/functionalized-GeC heterostructures. Furthermore, we find that electric fields and strain engineering can change both the Schottky barrier heights and the contact types of the Gr/functionalized-GeC vdWHs. These findings suggest that Gr/functionalized-GeC heterostructures can be considered as a promising candidate for designing high-performance optoelectronic and nanoelectronic devices.

16.
RSC Adv ; 10(5): 2967-2974, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-35496107

ABSTRACT

Vertical heterostructures from two or more than two two-dimensional materials are recently considered as an effective tool for tuning the electronic properties of materials and for designing future high-performance nanodevices. Here, using first principles calculations, we propose a GeC/C2N van der Waals heterostructure and investigate its electronic and optical properties. We demonstrate that the intrinsic electronic properties of both GeC and C2N monolayers are quite preserved in GeC/C2N HTS owing to the weak forces. At the equilibrium configuration, GeC/C2N HTS forms the type-II band alignment with an indirect band gap of 0.42 eV, which can be considered to improve the effective separation of electrons and holes. Besides, GeC/C2N vdW-HTS exhibits strong absorption in both visible and near ultra-violet regions with an intensity of 105 cm-1. The electronic properties of GeC/C2N HTS can be tuned by applying an electric field and vertical strains. The semiconductor to metal transition can be achieved in GeC/C2N HTS in the case when the positive electric field of +0.3 V Å-1 or the tensile vertical strain of -0.9 Å is applied. These findings demonstrate that GeC/C2N HTS can be used to design future high-performance multifunctional devices.

17.
RSC Adv ; 10(17): 9824-9832, 2020 Mar 06.
Article in English | MEDLINE | ID: mdl-35498594

ABSTRACT

The formation of van der Waals heterostructures (vdWHs) have recently emerged as promising structures to make a variety of novel nanoelectronic and optoelectronic devices. Here, in this work, we investigate the structural, electronic and optical features of ZnO/ZrSSe vdWHs for different stacking patterns of ZnO/SeZrS and ZnO/SZrSe by employing first-principles calculations. Binding energy and ab initio molecular dynamics calculations are also employed to confirm the structural and thermal stability of the ZnO/ZrSSe vdWHs for both models. We find that in both stacking models, the ZnO and ZrSSe layers are bonded via weak vdW forces, leading to easy exfoliation of the layers. More interestingly, both the ZnO/SeZrS and ZnO/SZrSe vdWHs posses type-II band alignment, making them promising candidates for the use of photovoltaic devices because the photogenerated electrons-holes are separated at the interface. The ZnO/ZrSSe vdWHs for both models possess high performance absorption in the visible and near-infrared regions, revealing their use for acquiring efficient photocatalysts. Moreover, the band gap values and band alignments of the ZnO/ZrSSe for both models can be adjusted by an electric field as well as vertical strains. There is a transformation from semiconductor to metal under a negative electric field and tensile vertical strain. These findings demonstrate that ZnO/ZrSSe vdWHs are a promising option for optoelectronic and nanoelectronic applications.

18.
RSC Adv ; 10(41): 24683-24690, 2020 Jun 24.
Article in English | MEDLINE | ID: mdl-35516170

ABSTRACT

Modeling novel van der Waals (vdW) heterostructures is an emerging field to achieve materials with exciting properties for various devices. In this paper, we report a theoretical investigation of GaN-MX2 (M = Mo, W; X= S, Se) van der Waals heterostructures by hybrid density functional theory calculations. Our results predicted that GaN-MoS2, GaN-MoSe2, GaN-WS2 and GaN-WSe2 van der Waals heterostructures are energetically stable. Furthermore, we find that GaN-MoS2, GaN-MoSe2 and GaN-WSe2 are direct semiconductors, whereas GaN-WS2 is an indirect band gap semiconductor. Type-II band alignment is observed through PBE, PBE + SOC and HSE calculations in all heterostructures, except GaN-WSe2 having type-I. The photocatalytic behavior of these systems, based on Bader charge analysis, work function and valence and conduction band edge potentials, shows that these heterostructures are energetically favorable for water splitting.

19.
RSC Adv ; 10(72): 44545-44550, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-35517160

ABSTRACT

In this work, we perform first-principles calculations to examine the electronic, optical and photocatalytic properties of the BX-ZnO (X = As, P) heterostructures. The interlayer distance and binding energy of the most energetically favorable stacking configuration are 3.31 Å and -0.30 eV for the BAs-ZnO heterostructure and 3.30 Å and -0.25 eV for the BP-ZnO heterostructure. All the stacking patterns of the BX-ZnO heterostructures are proved to have thermal stability by performing AIMD simulations. The BAs-ZnO and BP-ZnO heterostructures are semiconductors with direct band gaps of 1.43 eV and 2.35 eV, respectively, and they exhibit type-I band alignment, which make them suitable for light emission applications with the ultra-fast recombination between electrons and holes. Both the BAs-ZnO and BP-ZnO heterostructures can exhibit a wider optical absorption range for visible-light owing to their reduced band gaps compared with the isolated BAs, BP and ZnO monolayers. The band alignment of both the BAs-ZnO and BP-ZnO heterostructures can straddle the water redox potential and they would have better performances owing to the direct band gap and the reduced band gap. All these findings demonstrate that the BX-ZnO heterostructures can be considered as potential photocatalysts for water splitting.

20.
RSC Adv ; 10(40): 24127-24133, 2020 Jun 19.
Article in English | MEDLINE | ID: mdl-35517332

ABSTRACT

In this work, we systematically studied the electronic structure and optical characteristics of van der Waals (vdW) heterostructure composed of a single layer of GaN and GeC using first principles calculations. The GaN-GeC vdW heterostructure exhibits indirect band gap semiconductor properties and possesses type-II energy band arrangement, which will help the separation of photogenerated carriers and extend their lifetime. In addition, the band edge positions of the GaN-GeC heterostructure meet both the requirements of water oxidation and reduction energy, indicating that the photocatalysts have the potential for water decomposition. The GaN-GeC heterostructure shows obvious absorption peaks in the visible region, leading to the efficient use of solar energy. Tensile and compressive strains of up to 10% are also proposed. Tensile strain leads to an increase in the blue shift of optical absorption, whereas a red shift is observed in the case of the compressive strain. These fascinating characteristics make the GaN-GeC vdW heterostructure a highly effective photocatalyst for water splitting.

SELECTION OF CITATIONS
SEARCH DETAIL
...