Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 881: 163522, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37068672

ABSTRACT

In recent times, the need to make water safer and cleaner through the elimination of recalcitrant pharmaceutical residues has been the aim of many studies. Fluoroquinolone antibiotics such as ciprofloxacin, norfloxacin, enrofloxacin, and levofloxacin are among the commonly detected pharmaceuticals in wastewater. Since the presence of these pharmaceuticals in water bodies poses serious risks to living organisms, it is vital to adopt effective wastewater treatment techniques for their complete removal. Electrochemical technologies such as photoelectrocatalysis, electro-Fenton, electrocoagulation, and electrochemical oxidation have been established as techniques capable of the complete removal of organics including pharmaceuticals from wastewater. Hence, this review presents discussions on the recent progress (literature within 2018-2022) in the applications of common electrochemical processes for the degradation of fluoroquinolone antibiotics from wastewater. The fundamentals of these processes are highlighted while the results obtained using the processes are critically discussed. Furthermore, the inherent advantages and limitations of these processes in the mineralization of fluoroquinolone antibiotics are clearly emphasized. Additionally, appropriate recommendations are made toward improving electrochemical technologies for the complete removal of these pharmaceuticals with minimal energy consumption. Therefore, this review will serve as a bedrock for future researchers concerned with wastewater treatments to make informed decisions in the selection of suitable electrochemical techniques for the removal of pharmaceuticals from wastewater.


Subject(s)
Water Pollutants, Chemical , Water Purification , Wastewater , Fluoroquinolones , Oxidation-Reduction , Water , Water Purification/methods , Anti-Bacterial Agents , Pharmaceutical Preparations , Water Pollutants, Chemical/analysis , Hydrogen Peroxide/chemistry
2.
Environ Sci Pollut Res Int ; 30(6): 14062-14090, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36567393

ABSTRACT

Globally, ibuprofen is the third most consumed drug and its presence in the environment is a concern because little is known about its adverse effects on humans and aquatic life. Environmentalists have made monitoring and the detection of ibuprofen in biological and environmental matrices a priority. For the detection and monitoring of ibuprofen, sensors and biosensors have provided rapid analysis time, sensitivity, high-throughput screening, and real-time analysis. Researchers are increasingly seeking eco-friendly technology, and this has led to an interest in developing biodegradable, bioavailable, and non-toxic sensors, or biosensors. The integration of polymers into sensor systems has proven to significantly improve sensitivity, selectivity, and stability and minimize sample preparation using bioavailable and biodegradable polymers. This review provides a general overview of perspectives and trends of polymer-based sensors and biosensors for the detection of ibuprofen compared to non-polymer-based sensors.


Subject(s)
Biosensing Techniques , Ibuprofen , Humans , Wastewater , Polymers , Technology
3.
J Colloid Interface Sci ; 603: 666-684, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34225071

ABSTRACT

Herein, a dual Z-scheme heterojunction photocatalyst consisting of Co3O4, CuBi2O4, and SmVO4 for carbamazepine (CBZ) degradation was synthesised and characterised by XRD, FTIR, UV-Vis DRS, XPS, FE-SEM, and TEM. The reduction in electron-hole recombination was evaluated by PL, LSV, and EIS analysis. The heterojunction, Co3O4/CuBi2O4/SmVO4 (CCBSV) showed enhanced photocatalytic activity of 76.1% ± 3.81 CBZ degradation under visible light irradiation, ascribed to the improved interfacial contact, visible light capturing ability, and enhanced electron-hole separation and transportation through the formation of Z-scheme heterojunction. The formation of dual Z-scheme was confirmed by active radical experiments and XPS analysis that helped to prose the mechanism of degradation. The catalyst showed sustained stability after 4 cycles of reuse. Ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) was employed to identify the degradation by-products of CBZ, and a possible mechanistic degradation pathway was proposed. This study provided an insight into the development of efficient dual Z-scheme heterojunction photocatalyst for remediation of CBZ which can be extended to other organic pollutants.


Subject(s)
Copper , Vanadates , Bismuth , Carbamazepine , Cobalt , Light , Oxides , Samarium
4.
Sensors (Basel) ; 20(20)2020 Oct 10.
Article in English | MEDLINE | ID: mdl-33050361

ABSTRACT

Graphitic carbon nitride (g-C3N4) is a two-dimensional conjugated polymer that has attracted the interest of researchers and industrial communities owing to its outstanding analytical merits such as low-cost synthesis, high stability, unique electronic properties, catalytic ability, high quantum yield, nontoxicity, metal-free, low bandgap energy, and electron-rich properties. Notably, graphitic carbon nitride (g-C3N4) is the most stable allotrope of carbon nitrides. It has been explored in various analytical fields due to its excellent biocompatibility properties, including ease of surface functionalization and hydrogen-bonding. Graphitic carbon nitride (g-C3N4) acts as a nanomediator and serves as an immobilization layer to detect various biomolecules. Numerous reports have been presented in the literature on applying graphitic carbon nitride (g-C3N4) for the construction of electrochemical sensors and biosensors. Different electrochemical techniques such as cyclic voltammetry, electrochemiluminescence, electrochemical impedance spectroscopy, square wave anodic stripping voltammetry, and amperometry techniques have been extensively used for the detection of biologic molecules and heavy metals, with high sensitivity and good selectivity. For this reason, the leading drive of this review is to stress the importance of employing graphitic carbon nitride (g-C3N4) for the fabrication of electrochemical sensors and biosensors.


Subject(s)
Graphite , Nanostructures , Nitrogen Compounds , Catalysis
5.
Anal Bioanal Chem ; 411(23): 6173-6187, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31324926

ABSTRACT

A simple, rapid and efficient solid-phase extraction method based on synthesized carbon nanodots was developed for the preconcentration and extraction of personal care products and organophosphorus pesticides in environmental matrices. Factorial (screening) and central composite designs were employed for the optimization of experimental conditions that could potentially influence the percentage recoveries of the target analytes. The experimental variables, including sample pH, mass of adsorbent, eluent volume and sample volume, were examined. Under the optimized conditions, the developed method was validated, and acceptable analytical results obtained showed good performance. The method accuracy carried out at two spiking levels (10 and 100 µg L-1) in different sample matrices ranged between 63 and 120%. The method precision based on relative standard deviation (% RSD) was < 10%. The linear range studied had a determination coefficient of (R2 > 0.995). The limits of detection (LOD) and limit of quantification (LOQ) established varied between 0.015-0.125 and 0.05-0.415 µg L-1 ,respectively. The ensuing method was applied successfully in the determination of the five multi-class organic compounds under study, in influent and effluent wastewater matrices, sampled from a municipal wastewater treatment plant located in Pretoria, South Africa.


Subject(s)
Carbon/chemistry , Cosmetics/isolation & purification , Nanotubes/chemistry , Organophosphorus Compounds/isolation & purification , Pesticides/isolation & purification , Wastewater/analysis , Water Pollutants, Chemical/isolation & purification , Chromatography, Liquid/methods , Limit of Detection , Solid Phase Extraction/methods , Tandem Mass Spectrometry/methods , Water Purification/methods
6.
Biosensors (Basel) ; 9(1)2019 Mar 08.
Article in English | MEDLINE | ID: mdl-30857164

ABSTRACT

An electrochemical immunosensor for the quantification of carcinoembryonic antigen (CEA) using a nanocomposite of polypropylene imine dendrimer (PPI) and carbon nanodots (CNDTs) on an exfoliated graphite electrode (EG) is reported. The carbon nanodots were prepared by pyrolysis of oats. The nanocomposites (PPI and CNDTs) were characterized using X-ray powder diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), high-resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM). The proposed immunosensor was prepared on an exfoliated graphite electrode sequentially by drop coating CNDTs, the electrodeposition of G2-PPI (generation 2 poly (propylene imine) dendrimer), the immobilization of anti-CEA on the modified electrode for 80 min at 35 °C, and dropping of bovine serum albumin (BSA) to minimize non-specific binding sites. Cyclic voltammetry was used to characterize each stage of the fabrication of the immunosensor. The proposed immunosensor detected CEA within a concentration range of 0.005 to 300 ng/mL with a detection limit of 0.00145 ng/mL by using differential pulse voltammetry (DPV). The immunosensor displayed good stability and was also selective in the presence of some interference species such as ascorbic acid, glucose, alpha-fetoprotein, prostate-specific antigen and human immunoglobulin. Furthermore, the fabricated immunosensor was applied in the quantification of CEA in a human serum sample, indicating its potential for real sample analysis.


Subject(s)
Biosensing Techniques/methods , Carcinoembryonic Antigen/analysis , Electrochemical Techniques/methods , Graphite/chemistry , Nanocomposites/chemistry , Carcinoembryonic Antigen/immunology , Dendrimers/chemistry , Immunoassay/methods , Polypropylenes/chemistry
7.
RSC Adv ; 8(19): 10255-10266, 2018 Mar 13.
Article in English | MEDLINE | ID: mdl-35540454

ABSTRACT

A novel Pd-ZnO-expanded graphite (EG) photoelectrode was constructed from a Pd-ZnO-EG nanocomposite synthesised by a hydrothermal method and characterised using various techniques such as X-ray diffractometry (XRD), Raman spectroscopy, UV-Vis diffuse reflectance spectroscopy, nitrogen adsorption-desorption analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). Cyclic voltammetry and photocurrent response measurements were also carried out on the electrode. The Pd-ZnO-EG electrode was employed in the photoelectrocatalytic removal of 4-nitrophenol as a target water pollutant at a neutral pH and with a current density of 7 mA cm-2. Optical studies revealed that the Pd-ZnO-EG absorbed strongly in the visible light region. The Pd-ZnO-EG electrode showed improved photoelectrocatalytic activity in relation to ZnO-EG and EG electrodes for the removal of the 4-nitrophenol. The photocurrent responses showed that the Pd-ZnO-EG nanocomposite electrode could be employed as a good photoelectrode for photoelectrocatalytic processes and environmental remediation such as treatment of industrial waste waters. Density functional theory method was used to model the oxidative degradation of 4-nitrophenol by the hydroxyl radical which generates hydroquinone, benzoquinone, 4-nitrocatechol, 4-nitroresorcinol and the opening of the 4-nitrophenol ring. Furthermore, the hydroxyl radical is regenerated and can further oxidise the ring structure and initiate a new degradation process.

8.
RSC Adv ; 8(54): 30683-30691, 2018 Aug 30.
Article in English | MEDLINE | ID: mdl-35548739

ABSTRACT

A novel electrochemical immunosensor for the quantification of α-feto protein (AFP) using a nanocomposite of manganese(iv) oxide nanorods (MnO2NRs) and gold nanoparticles (AuNPs) as the immobilisation layer is presented. The MnO2NRs was synthesised using a hydrothermal method and AuNPs were electrodeposited on a glassy carbon electrode surface. The MnO2NRs were characterised with scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and X-ray powder diffraction (XRD). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to characterise the immunosensor at each stage of the biosensor preparation. The MnO2 nanorods and AuNPs were applied as the immobilisation layer to efficiently capture the antibodies and amplify the electrochemical signal. Under optimised conditions, the fabricated immunosensor was utilised for the quantification of AFP with a wide dynamic range of 0.005 to 500 ng mL-1 and detection limits of 0.00276 ng mL-1 and 0.00172 ng mL-1 (S/N = 3) were obtained from square wave anodic stripping voltammetry and EIS respectively. The nanocomposite modifier enhanced the immunosensor performance. More so, this label-free immunosensor possesses good stability over a period of two weeks when stored at 4 °C and was selective in the presence of some interfering species.

9.
Talanta ; 153: 99-106, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27130095

ABSTRACT

The applicability of a bismuth modified exfoliated graphite (EG) electrode for the co-detection of heavy metal ions -As(III), Hg(II) and Pb(II)-in water samples using square wave anodic stripping voltammetry (SWASV) is reported. Bismuth nanoparticles were deposited on an EG electrode potentiostatically at -1000mV for 300s to form EG-Bi electrode. The Bi modified EG electrode was characterised in 5mM ferrocene and used to as an electrochemical sensor for Pb(II) and Hg(II) individually in 0.1M acetate buffer solution (pH 5) with detection limits (LODs) of 0.83µgL(-1)., 0.46µgL(-1) and limit of quantification of 2.8µgL(-1) and 1.5µgL(-1) respectively. Simultaneous detection of Pb(II), As(III) and Hg(II) was also performed with LODs of 0.053µgL(-1), 0.014µgL(-1), 0.081µgL(-1) and LOQs of 0.18µgL(-1), 0.047µgL(-1) and 0.27µgL(-1) for Pb(II), As(III) and Hg(II) respectively. All the detections were performed under optimised experimental conditions. The stability of the EG-Bi sensor was tested and the electrode was applied to environmental samples. The results found with this method were comparable with those obtained with inductively coupled plasma - optical emission spectrometric technique.


Subject(s)
Electrodes , Arsenic , Bismuth , Cadmium , Graphite , Lead , Mercury
SELECTION OF CITATIONS
SEARCH DETAIL
...