Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag Res ; 41(1): 37-51, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36346183

ABSTRACT

The coconut industry generates a relatively large amount of coconut shell and husk biomass, which can be utilized for industrial and environmental purposes. Immense potential for added value when coconut shell and husk biomass are turned into biochar and limited studies are available, making this review paper significant. This paper specifically presents the production and activation technology, economic and financial aspect and application of biochar from coconut shell and husk biomass. Pyrolysis, gasification and self-sustained carbonization are among the production technology discussed to convert this biomass into carbon-rich materials with distinctive characteristics. The surface characteristics of coconut-based biochar, that is, Brunauer-Emmett-Teller (BET) surface area (SBET), pore volume (Vp), pore diameter (dp) and surface functional group can be enhanced by physical and chemical activation and metal impregnation. Due to their favourable characteristics, coconut shell and husk-activated biochar exhibit their potential as valuable adsorption materials for industrial and environmental application including biodiesel production, capacitive deionization, soil amendment, water treatment and carbon sequestration. With the knowledge of the potential, the coconut industry can contribute to both the local and global biocircular economy by producing coconut shell and husk biochar for economic development and environmental remediation. The capital and operating cost for production and activation processes must be taken into account to ensure bioeconomy sustainability, hence coconut shell and husk biomass have a great potential for income generation.


Subject(s)
Charcoal , Cocos , Carbon , Soil , Technology
2.
Polymers (Basel) ; 14(19)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36236161

ABSTRACT

Biodegradable film packaging made from thermoplastic starch (TPS) has low mechanical performance and high water solubility, which is incomparable with synthetic films. In this work, Aloe vera (AV) gel and plasticized soluble potato starch were utilised to improve the mechanical stability and water solubility of TPS. Dried starch was mixed with glycerol and different AV gel concentrations (0% to 50%). The TPS + 50% AV gel (30 g TPS + 15 g AV gel) showed the best improvement compared to TPS alone. When compared to similar TPS films with AV gel added, this film is stronger and dissolves better in water. Mechanical qualities improved the tensile strength and Young's modulus of the TPS film, with 1.03 MPa to 9.14 MPa and 51.92 MPa to 769.00 MPa, respectively. This was supported by the improvement of TPS water solubility from 57.44% to 46.6% and also by the increase in decomposition temperature of the TPS. This promises better heat resistance. The crystallinity percentage increase to 24.26% suggested that the formation of hydrogen bonding between TPS and AV gel enhanced crosslinking in the polymeric structure. By adding AV gel, the TPS polymeric structure is improved and can be used as a biodegradable food-packaging film.

3.
Sci Rep ; 12(1): 7630, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35538095

ABSTRACT

To understand the characteristics of particulate matter (PM) in the Southeast Asia region, the spatial-temporal concentrations of PM10, PM2.5 and PM1 in Malaysia (Putrajaya, Bukit Fraser and Kota Samarahan) and Thailand (Chiang Mai) were determined using the AS-LUNG V.2 Outdoor sensor. The period of measurement was over a year from 2019 to 2020. The highest concentrations of all sizes of PM in Putrajaya, Bukit Fraser and Kota Samarahan were observed in September 2019 while the highest PM10, PM2.5 and PM1 concentrations in Chiang Mai were observed between March and early April 2020 with 24 h average concentrations during haze days in ranges 83.7-216 µg m-3, 78.3-209 µg m-3 and 57.2-140 µg m-3, respectively. The average PM2.5/PM10 ratio during haze days was 0.93 ± 0.05, which was higher than the average for normal days (0.89 ± 0.13) for all sites, indicating higher PM2.5 concentrations during haze days compared to normal days. An analysis of particle deposition in the human respiratory tract showed a higher total deposition fraction value during haze days than on non-haze days. The result from this study indicated that Malaysia and Thailand are highly affected by biomass burning activity during the dry seasons and the Southwest monsoon.


Subject(s)
Air Pollutants , Particulate Matter , Air Pollutants/analysis , Asia, Southeastern , Biomass , Environmental Monitoring , Humans , Particle Size , Particulate Matter/analysis , Seasons
4.
Molecules ; 27(7)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35408756

ABSTRACT

Nowadays, many studies focus on the potential of bamboo as a source of bioactive compounds and natural antioxidants for nutraceutical, pharmaceutical, and food sources. This study is a pioneering effort to determine the total phenolic content, total flavonoid content and free radical scavenging activity, as well as the phenolic identification and quantification of Bambusa beecheyana. The study was conducted by using ethanol, methanol, and water for solvent extraction by applying cold maceration, Soxhlet, and ultrasonic-assisted extraction techniques. The results showed that Soxhlet and ultrasonic-assisted Bambusa beecheyana culm extracts had an increase in the extract's dry yield (1.13-8.81%) but a constant p-coumaric acid (4) content (0.00035 mg/g) as compared to the extracts from the cold maceration. The ultrasonic-assisted extraction method required only a small amount (250 mL) of solvent to extract the bamboo culms. A significant amount of total phenolics (107.65 ± 0.01 mg GAE/g) and flavonoids (43.89 ± 0.05 mg QE/g) were found in the Soxhlet methanol culm extract. The extract also possessed the most potent antioxidant activity with an IC50 value of 40.43 µg/mL as compared to the positive control, ascorbic acid. The UHPLC-ESI-MS/MS analysis was carried out on the Soxhlet methanol extract, ultrasonic-assisted extract at 40 min, and cold methanol extract. The analysis resulted in the putative identification of a total of five phenolics containing cinnamic acid derivatives. The two cinnamic acid derivatives, p-coumaric acid (4) and 4-methoxycinnamic acid (5), were then used as markers to quantify the concentration of both compounds in all the extracts. Both compounds were not found in the water extracts. These results revealed that the extract from Soxhlet methanol of Bambusa beecheyana could be a potential botanical source of natural antioxidants. This study provides an important chemical composition database for further preclinical research on Bambusa beecheyana.


Subject(s)
Antioxidants , Bambusa , Antioxidants/chemistry , Flavonoids/chemistry , Methanol , Phenols/chemistry , Plant Extracts/chemistry , Solvents/chemistry , Tandem Mass Spectrometry , Water
5.
Sci Rep ; 11(1): 18257, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34521938

ABSTRACT

The reason for such enormous efforts in palm oil mill effluent research would be what has been singled out as one of the major sources of pollution in Malaysia, and perhaps the most costly and complex waste to manage. Palm oil mill final discharge, which is the treated effluent, will usually be discharged to nearby land or river since it has been the least costly way to dispose of. Irrefutably, the quality level of the treated effluent does not always satisfy the surface water quality in conformity to physicochemical characteristics. To work on improving the treated effluent quality, a vertical surface-flow constructed wetland system was designed with Pennisetum purpureum (Napier grass) planted on the wetland floor. The system effectively reduced the level of chemical oxygen demand by 62.2 ± 14.3%, total suspended solid by 88.1 ± 13.3%, ammonia by 62.3 ± 24.8%, colour by 66.6 ± 13.19%, and tannin and lignin by 57.5 ± 22.3%. Heat map depicted bacterial diversity and relative abundance in life stages from the wetland soil, whereby bacterial community associated with the pollutant removal was found to be from the families Anaerolineaceae and Nitrosomonadaceae, and phyla Cyanobacteria and Acidobacteria.

6.
Waste Manag Res ; 37(5): 551-555, 2019 May.
Article in English | MEDLINE | ID: mdl-30727859

ABSTRACT

A one-step self-sustained carbonization of coconut shell biomass, carried out in a brick reactor at a relatively low temperature of 300-500°C, successfully produced a biochar-derived adsorbent with 308 m2/g surface area, 2 nm pore diameter, and 0.15 cm3/g total pore volume. The coconut shell biochar qualifies as a nano-adsorbent, supported by scanning electron microscope images, which showed well-developed nano-pores on the surface of the biochar structure, even though there was no separate activation process. This is the first report whereby coconut shell can be converted to biochar-derived nano-adsorbent at a low carbonization temperature, without the need of the activation process. This is superior to previous reports on biochar produced from oil palm empty fruit bunch.


Subject(s)
Charcoal , Cocos , Biomass , Temperature
7.
Waste Manag Res ; 34(2): 176-80, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26612557

ABSTRACT

An appropriate technology for waste utilisation, especially for a large amount of abundant pressed-shredded oil palm empty fruit bunch (OFEFB), is important for the oil palm industry. Self-sustained pyrolysis, whereby oil palm biomass was combusted by itself to provide the heat for pyrolysis without an electrical heater, is more preferable owing to its simplicity, ease of operation and low energy requirement. In this study, biochar production under self-sustained pyrolysis of oil palm biomass in the form of oil palm empty fruit bunch was tested in a 3-t large-scale pool-type reactor. During the pyrolysis process, the biomass was loaded layer by layer when the smoke appeared on the top, to minimise the entrance of oxygen. This method had significantly increased the yield of biochar. In our previous report, we have tested on a 30-kg pilot-scale capacity under self-sustained pyrolysis and found that the higher heating value (HHV) obtained was 22.6-24.7 MJ kg(-1) with a 23.5%-25.0% yield. In this scaled-up study, a 3-t large-scale procedure produced HHV of 22.0-24.3 MJ kg(-1) with a 30%-34% yield based on a wet-weight basis. The maximum self-sustained pyrolysis temperature for the large-scale procedure can reach between 600 °C and 700 °C. We concluded that large-scale biochar production under self-sustained pyrolysis was successfully conducted owing to the comparable biochar produced, compared with medium-scale and other studies with an electrical heating element, making it an appropriate technology for waste utilisation, particularly for the oil palm industry.


Subject(s)
Arecaceae/chemistry , Biomass , Charcoal/analysis , Incineration/methods , Hot Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...