Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 1022: 161-71, 2013.
Article in English | MEDLINE | ID: mdl-23765661

ABSTRACT

Oligosaccharyltransferases (OTases) constitute a family of glycosyltransferases that catalyze the transfer of an oligosaccharide from a lipid donor to an acceptor molecule, commonly a protein. These enzymes can transfer a variety of glycan structures, including polysaccharides, to different protein acceptors. Therefore, this property endows the OTases with great biotechnological potential as these enzymes could be applied to produce several glycoconjugates relevant to the pharmaceutical industry. Furthermore, bacterial OTases are thought to be involved in pathogenesis mechanisms. Here we describe how to purify a representative OTase and its protein acceptor and glycan donor to perform in vitro glycosylation studies.


Subject(s)
Bacteria/enzymology , Enzyme Assays/methods , Hexosyltransferases/metabolism , Membrane Proteins/metabolism , Glycosylation , Hexosyltransferases/isolation & purification , Membrane Proteins/isolation & purification
2.
Glycobiology ; 23(2): 259-72, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23089617

ABSTRACT

Xanthan is a polysaccharide secreted by Xanthomonas campestris that contains pentameric repeat units. The biosynthesis of xanthan involves an operon composed of 12 genes (gumB to gumM). In this study, we analyzed the proteins encoded by gumB and gumC. Membrane fractionation showed that GumB was mainly associated with the outer membrane, whereas GumC was an inner membrane protein. By in silico analysis and specific globomycin inhibition, GumB was characterized as a lipoprotein. By reporter enzyme assays, GumC was shown to contain two transmembrane segments flanking a large periplasmic domain. We confirmed that gumB and gumC mutant strains uncoupled the synthesis of the lipid-linked repeat unit from the polymerization process. We studied the effects of gumB and gumC gene amplification on the production, composition and viscosity of xanthan. Overexpression of GumB, GumC or GumB and GumC simultaneously did not affect the total amount or the chemical composition of the polymer. GumB overexpression did not affect xanthan viscosity; however, a moderate increase in xanthan viscosity was achieved when GumC protein levels were increased 5-fold. Partial degradation of GumC was observed when only that protein was overexpressed; but co-expression of GumB and GumC diminished GumC degradation and resulted in higher xanthan viscosity than individual GumB or GumC overexpression. Compared with xanthan from the wild-type strain, longer polymer chains from the strain that simultaneously overexpressed GumB and GumC were observed by atomic force microscopy. Our results suggest that GumB-GumC protein levels modulate xanthan chain length, which results in altered polymer viscosity.


Subject(s)
Polysaccharides, Bacterial/chemistry , Polysaccharides , Lipoproteins/chemistry , Lipoproteins/genetics , Operon/genetics , Polysaccharides/chemistry , Polysaccharides/genetics , Polysaccharides, Bacterial/genetics , Xanthomonas campestris/chemistry
3.
Glycobiology ; 21(6): 734-42, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21098514

ABSTRACT

Oligosaccharyltransferases (OTases) are responsible for the transfer of carbohydrates from lipid carriers to acceptor proteins and are present in all domains of life. In bacteria, the most studied member of this family is PglB from Campylobacter jejuni (PglB(Cj)). This enzyme is functional in Escherichia coli and, contrary to its eukaryotic counterparts, has the ability to transfer a variety of oligo- and polysaccharides to protein carriers in vivo. Phylogenetic analysis revealed that in the delta proteobacteria Desulfovibrio sp., the PglB homolog is more closely related to eukaryotic and archaeal OTases than to its Campylobacter counterparts. Genetic analysis revealed the presence of a putative operon that might encode all enzymes required for N-glycosylation in Desulfovibrio desulfuricans. D. desulfuricans PglB (PglB(Dd)) was cloned and successfully expressed in E. coli, and its activity was confirmed by transferring the C. jejuni heptasaccharide onto the model protein acceptor AcrA. In contrast to PglB(Cj), which adds two glycan chains to AcrA, a single oligosaccharide was attached to the protein by PglB(Dd). Site-directed mutagenesis of the five putative N-X-S/T glycosylation sites in AcrA and mass spectrometry analysis showed that PglB(Dd) does not recognize the "conventional bacterial glycosylation sequon" consisting of the sequence D/E-X(1)-N-X(2)-S/T (where X(1) and X(2) are any amino acid except proline), and instead used a different site for the attachment of the oligosaccharide than PglB(Cj.). Furthermore, PglB(Dd) exhibited relaxed glycan specificity, being able to transfer mono- and polysaccharides to AcrA. Our analysis constitutes the first characterization of an OTase from delta-proteobacteria involved in N-linked protein glycosylation.


Subject(s)
Desulfovibrio desulfuricans/enzymology , Glycoproteins/genetics , Hexosyltransferases/metabolism , Membrane Proteins/metabolism , Polysaccharides/metabolism , Amino Acid Sequence , Campylobacter jejuni/enzymology , Escherichia coli/genetics , Glycoproteins/chemistry , Glycoproteins/metabolism , Glycosylation , Models, Molecular , Protein Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...