Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 12(7)2021 06 26.
Article in English | MEDLINE | ID: mdl-34206759

ABSTRACT

Autochthonous taurine and later introduced zebu cattle from Cameroon differ considerably in their resistance to endemic pathogens with little to no reports of the underlying genetic make-up. Breed history and habitat variations are reported to contribute significantly to this diversity worldwide, presumably in Cameroon as well, where locations diverge in climate, pasture, and prevalence of infectious agents. In order to investigate the genetic background, the genotypes of 685 individuals of different Cameroonian breeds were analysed by using the BovineSNP50v3 BeadChip. The variance components including heritability were estimated and genome-wide association studies (GWAS) were performed. Phenotypes were obtained by parasitological screening and categorised in Tick-borne pathogens (TBP), gastrointestinal nematodes (GIN), and onchocercosis (ONC). Estimated heritabilities were low for GIN and TBP (0.079 (se = 0.084) and 0.109 (se = 0.103) respectively) and moderate for ONC (0.216 (se = 0.094)). Further than revealing the quantitative nature of the traits, GWAS identified putative trait-associated genomic regions on five chromosomes, including the chromosomes 11 and 18 for GIN, 20 and 24 for TBP, and 12 for ONC. The results imply that breeding for resistant animals in the cattle population from Northern Cameroon might be possible for the studied pathogens; however, further research in this field using larger datasets will be required to improve the resistance towards pathogen infections, propose candidate genes or to infer biological pathways, as well as the genetic structures of African multi-breed populations.


Subject(s)
Disease Resistance/genetics , Gastrointestinal Diseases/genetics , Onchocerciasis/genetics , Tick-Borne Diseases/genetics , Animals , Cattle , Cattle Diseases/genetics , Cattle Diseases/parasitology , Gastrointestinal Diseases/parasitology , Gastrointestinal Diseases/veterinary , Genetic Predisposition to Disease , Genome-Wide Association Study , Host-Parasite Interactions/genetics , Nematoda/genetics , Nematoda/pathogenicity , Onchocerciasis/parasitology , Onchocerciasis/veterinary , Tick-Borne Diseases/parasitology , Tick-Borne Diseases/veterinary
2.
Life (Basel) ; 11(3)2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33809351

ABSTRACT

BACKGROUND: Feather pecking is a well-known problem in layer flocks that causes animal welfare restrictions and contributes to economic losses. Birds' gut microbiota has been linked to feather pecking. This study aims to characterize the microbial communities of two laying hen lines divergently selected for high (HFP) and low (LFP) feather pecking and investigates if the microbiota is associated with feather pecking or agonistic behavior. METHODS: Besides phenotyping for the behavioral traits, microbial communities from the digesta and mucosa of the ileum and caeca were investigated using target amplicon sequencing and functional predictions. Microbiability was estimated with a microbial mixed linear model. RESULTS: Ileum digesta showed an increase in the abundance of the genus Lactobacillus in LFP, while Escherichia was abundant in HFP hens. In the caeca digesta and mucosa of the LFP line were more abundant Faecalibacterium and Blautia. Tryptophan metabolism and lysine degradation were higher in both digesta and mucosa of the HFP hens. Linear models revealed that the two lines differ significantly in all behavior traits. Microbiabilities were close to zero and not significant in both lines and for all traits. CONCLUSIONS: Trait variation was not affected by the gut microbial composition in both selection lines.

3.
Animals (Basel) ; 11(3)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33804055

ABSTRACT

Mitochondria are essential components of eukaryotes as they are involved in several organismic key processes such as energy production, apoptosis and cell growth. Despite their importance for the metabolism and physiology of all eukaryotic organisms, the impact of mitochondrial haplotype variation has only been studied for very few species. In this study we sequenced the mitochondrial genome of 180 individuals from two different strains of laying hens. The resulting haplotypes were combined with performance data such as body weight, feed intake and phosphorus utilization to assess their influence on the hens in five different life stages. After detecting a surprisingly low level of genetic diversity, we investigated the nuclear genetic background to estimate whether the low mitochondrial diversity is representative for the whole genetic background of the strains. Our results highlight the need for more in-depth investigation of the genetic compositions and mito-nuclear interaction in individuals to elucidate the basis of phenotypic performance differences. In addition, we raise the question of how the lack of mitochondrial variation developed, since the mitochondrial genome represents genetic information usually not considered in breeding approaches.

4.
BMC Genet ; 21(1): 114, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33004014

ABSTRACT

BACKGROUND: Feather pecking (FP) is damaging behavior in laying hens leading to global economic losses in the layer industry and massive impairments of animal welfare. The objective of the study was to discover genetic variants and affected genes that lead to FP behavior. To achieve that we imputed low-density genotypes from two different populations of layers divergently selected for FP to sequence level by performing whole genome sequencing on founder and half-sib individuals. In order to decipher the genetic structure of FP, genome wide association studies and meta-analyses of two resource populations were carried out by focusing on the traits 'feather pecks delivered' (FPD) and the 'posterior probability of a hen to belong to the extreme feather pecking subgroup' (pEFP). RESULTS: In this meta-analysis, we discovered numerous genes that are affected by polymorphisms significantly associated with the trait FPD. Among them SPATS2L, ZEB2, KCHN8, and MRPL13 which have been previously connected to psychiatric disorders with the latter two being responsive to nicotine treatment. Gene set enrichment analysis revealed that phosphatidylinositol signaling is affected by genes identified in the GWAS and that the Golgi apparatus as well as brain structure may be involved in the development of a FP phenotype. Further, we were able to validate a previously discovered QTL for the trait pEFP on GGA1, which contains variants affecting NIPA1, KIAA1211L, AFF3, and TSGA10. CONCLUSIONS: We provide evidence for the involvement of numerous genes in the propensity to exhibit FP behavior that could aid in the selection against this unwanted trait. Furthermore, we identified variants that are involved in phosphatidylinositol signaling, Golgi metabolism and cell structure and therefore propose changes in brain structure to be an influential factor in FP, as already described in human neuropsychiatric disorders.


Subject(s)
Behavior, Animal , Chickens/genetics , Feathers , Genetic Association Studies/veterinary , Animals , Female , Genotype , Haplotypes , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci
5.
Animals (Basel) ; 10(2)2020 Feb 06.
Article in English | MEDLINE | ID: mdl-32041297

ABSTRACT

Feather pecking (FP) is a longstanding serious problem in commercial flocks of laying hens. It is a highly polygenic trait and the genetic background is still not completely understood. In order to find genomic regions influencing FP, selection signatures between laying hen lines divergently selected for high and low feather pecking were mapped using the intra-population iHS and the inter-population FST approach. In addition, the existence of an extreme subgroup of FP hens (EFP) across both selected lines has been demonstrated by fitting a mixture of negative binomial distributions to the data and calculating the posterior probability of belonging to the extreme subgroup (pEFP) for each hen. A genomewide association study (GWAS) was performed for the traits pEFP and FP delivered (FPD) with a subsequent post GWAS analysis. Mapping of selection signatures revealed no clear regions under selection. GWAS revealed a region on Chromosome 1, where the existence of a QTL influencing FP is likely. The candidate genes found in this region are a part of the GABAergic system, which has already been linked to FP in previous studies. Despite the polygenic nature of FP, selection on these candidate genes may reduce FP.

SELECTION OF CITATIONS
SEARCH DETAIL
...