Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Brain Commun ; 3(2): fcab092, 2021.
Article in English | MEDLINE | ID: mdl-33997785

ABSTRACT

Prions are neurotropic pathogens composed of misfolded assemblies of the host-encoded prion protein PrPC which replicate by recruitment and conversion of further PrPC by an autocatalytic seeding polymerization process. While it has long been shown that mouse-adapted prions cannot replicate and are rapidly cleared in transgenic PrP0/0 mice invalidated for PrPC, these experiments have not been done with other prions, including from natural resources, and more sensitive methods to detect prion biological activity. Using transgenic mice expressing human PrP to bioassay prion infectivity and RT-QuIC cell-free assay to measure prion seeding activity, we report that prions responsible for the most prevalent form of sporadic Creutzfeldt-Jakob disease in human (MM1-sCJD) can persist indefinitely in the brain of intra-cerebrally inoculated PrP0/0 mice. While low levels of seeding activity were measured by RT-QuIC in the brain of the challenged PrP0/0 mice, the bio-indicator humanized mice succumbed at a high attack rate, suggesting relatively high levels of persistent infectivity. Remarkably, these humanized mice succumbed with delayed kinetics as compared to MM1-sCJD prions directly inoculated at low doses, including the limiting one. Yet, the disease that did occur in the humanized mice on primary and subsequent back-passage from PrP0/0 mice shared the neuropathological and molecular characteristics of MM1-sCJD prions, suggesting no apparent strain evolution during lifelong dormancy in PrP0/0 brain. Thus, MM1-sCJD prions can persist for the entire life in PrP0/0 brain with potential disease potentiation on retrotransmission to susceptible hosts. These findings highlight the capacity of prions to persist and rejuvenate in non-replicative environments, interrogate on the type of prion assemblies at work and alert on the risk of indefinite prion persistence with PrP-lowering therapeutic strategies.

2.
Front Bioeng Biotechnol ; 8: 591024, 2020.
Article in English | MEDLINE | ID: mdl-33335894

ABSTRACT

Prions are pathogenic infectious agents responsible for fatal, incurable neurodegenerative diseases in animals and humans. Prions are composed exclusively of an aggregated and misfolded form (PrP Sc ) of the cellular prion protein (PrPC). During the propagation of the disease, PrPSc recruits and misfolds PrPC into further PrPSc. In human, iatrogenic prion transmission has occurred with incompletely sterilized medical material because of the unusual resistance of prions to inactivation. Most commercial prion disinfectants validated against the historical, well-characterized laboratory strain of 263K hamster prions were recently shown to be ineffective against variant Creutzfeldt-Jakob disease human prions. These observations and previous reports support the view that any inactivation method must be validated against the prions for which they are intended to be used. Strain-specific variations in PrPSc physico-chemical properties and conformation are likely to explain the strain-specific efficacy of inactivation methods. Animal bioassays have long been used as gold standards to validate prion inactivation methods, by measuring reduction of prion infectivity. Cell-free assays such as the real-time quaking-induced conversion (RT-QuIC) assay and the protein misfolding cyclic amplification (PMCA) assay have emerged as attractive alternatives. They exploit the seeding capacities of PrPSc to exponentially amplify minute amounts of prions in biospecimens. European and certain national medicine agencies recently implemented their guidelines for prion inactivation of non-disposable medical material; they encourage or request the use of human prions and cell-free assays to improve the predictive value of the validation methods. In this review, we discuss the methodological and technical issues regarding the choice of (i) the cell-free assay, (ii) the human prion strain type, (iii) the prion-containing biological material. We also introduce a new optimized substrate for high-throughput PMCA amplification of human prions bound on steel wires, as translational model for prion-contaminated instruments.

3.
J Biol Chem ; 295(41): 14025-14039, 2020 10 09.
Article in English | MEDLINE | ID: mdl-32788216

ABSTRACT

Prions result from a drastic conformational change of the host-encoded cellular prion protein (PrP), leading to the formation of ß-sheet-rich, insoluble, and protease-resistant self-replicating assemblies (PrPSc). The cellular and molecular mechanisms involved in spontaneous prion formation in sporadic and inherited human prion diseases or equivalent animal diseases are poorly understood, in part because cell models of spontaneously forming prions are currently lacking. Here, extending studies on the role of the H2 α-helix C terminus of PrP, we found that deletion of the highly conserved 190HTVTTTT196 segment of ovine PrP led to spontaneous prion formation in the RK13 rabbit kidney cell model. On long-term passage, the mutant cells stably produced proteinase K (PK)-resistant, insoluble, and aggregated assemblies that were infectious for naïve cells expressing either the mutant protein or other PrPs with slightly different deletions in the same area. The electrophoretic pattern of the PK-resistant core of the spontaneous prion (ΔSpont) contained mainly C-terminal polypeptides akin to C1, the cell-surface anchored C-terminal moiety of PrP generated by natural cellular processing. RK13 cells expressing solely the Δ190-196 C1 PrP construct, in the absence of the full-length protein, were susceptible to ΔSpont prions. ΔSpont infection induced the conversion of the mutated C1 into a PK-resistant and infectious form perpetuating the biochemical characteristics of ΔSpont prion. In conclusion, this work provides a unique cell-derived system generating spontaneous prions and provides evidence that the 113 C-terminal residues of PrP are sufficient for a self-propagating prion entity.


Subject(s)
Amino Acid Sequence , PrPSc Proteins , Prion Diseases , Protein Aggregation, Pathological , Sequence Deletion , Animals , Cell Line , Humans , PrPSc Proteins/chemistry , PrPSc Proteins/genetics , PrPSc Proteins/metabolism , Prion Diseases/genetics , Prion Diseases/metabolism , Prion Diseases/pathology , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/pathology , Protein Conformation, alpha-Helical , Protein Domains , Rabbits , Sheep , Solubility
4.
Mol Neurobiol ; 57(6): 2572-2587, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32239450

ABSTRACT

Prion replication results from the autocatalytic templated assisted conversion of the host-encoded prion protein PrPC into misfolded, polydisperse PrPSc conformers. Structurally distinct PrPSc conformers can give rise to multiple prion strains. Within and between prion strains, the biological activity (replicative efficacy and specific infectivity) of PrPSc assemblies is size dependent and thus reflects an intrinsic structural heterogeneity. The contribution of such PrPSc heterogeneity across species prion adaptation, which is believed to be based on fit adjustment between PrPSc template(s) and host PrPC, has not been explored. To define the structural-to-fitness PrPSc landscape, we measured the relative capacity of size-fractionated PrPSc assemblies from different prion strains to cross mounting species barriers in transgenic mice expressing foreign PrPC. In the absence of a transmission barrier, the relative efficacy of the isolated PrPSc assemblies to induce the disease is like the efficacy observed in the homotypic context. However, in the presence of a transmission barrier, size fractionation overtly delays and even abrogates prion pathogenesis in both the brain and spleen tissues, independently of the infectivity load of the isolated assemblies. Altering by serial dilution PrPSc assembly content of non-fractionated inocula aberrantly reduces their specific infectivity, solely in the presence of a transmission barrier. This suggests that synergy between structurally distinct PrPSc assemblies in the inoculum is requested for crossing the species barrier. Our data support a mechanism whereby overcoming prion species barrier requires complementation between structurally distinct PrPSc assemblies. This work provides key insight into the "quasispecies" concept applied to prions, which would not necessarily rely on prion substrains as constituent but on structural PrPSc heterogeneity within prion population.


Subject(s)
Brain/metabolism , Prion Diseases/metabolism , Prion Proteins/metabolism , Animals , Cattle , Cricetinae , Mice , Mice, Transgenic , PrPSc Proteins/metabolism , Sheep
5.
Commun Biol ; 2: 363, 2019.
Article in English | MEDLINE | ID: mdl-31602412

ABSTRACT

The dynamics of aggregation and structural diversification of misfolded, host-encoded proteins in neurodegenerative diseases are poorly understood. In many of these disorders, including Alzheimer's, Parkinson's and prion diseases, the misfolded proteins are self-organized into conformationally distinct assemblies or strains. The existence of intrastrain structural heterogeneity is increasingly recognized. However, the underlying processes of emergence and coevolution of structurally distinct assemblies are not mechanistically understood. Here, we show that early prion replication generates two subsets of structurally different assemblies by two sequential processes of formation, regardless of the strain considered. The first process corresponds to a quaternary structural convergence, by reducing the parental strain polydispersity to generate small oligomers. The second process transforms these oligomers into larger ones, by a secondary autocatalytic templating pathway requiring the prion protein. This pathway provides mechanistic insights into prion structural diversification, a key determinant for prion adaptation and toxicity.


Subject(s)
Prion Proteins/chemistry , Protein Multimerization , Animals , Computer Simulation , Humans , Kinetics , Mice , Models, Molecular , Prion Proteins/metabolism , Protein Aggregation, Pathological/metabolism , Protein Conformation , Sheep
6.
Viruses ; 11(5)2019 05 10.
Article in English | MEDLINE | ID: mdl-31083283

ABSTRACT

Prions are proteinaceous infectious agents responsible for a range of neurodegenerative diseases in animals and humans. Prion particles are assemblies formed from a misfolded, ß-sheet rich, aggregation-prone isoform (PrPSc) of the host-encoded cellular prion protein (PrPC). Prions replicate by recruiting and converting PrPC into PrPSc, by an autocatalytic process. PrPSc is a pleiomorphic protein as different conformations can dictate different disease phenotypes in the same host species. This is the basis of the strain phenomenon in prion diseases. Recent experimental evidence suggests further structural heterogeneity in PrPSc assemblies within specific prion populations and strains. Still, this diversity is rather seen as a size continuum of assemblies with the same core structure, while analysis of the available experimental data points to the existence of structurally distinct arrangements. The atomic structure of PrPSc has not been elucidated so far, making the prion replication process difficult to understand. All currently available models suggest that PrPSc assemblies exhibit a PrPSc subunit as core constituent, which was recently identified. This review summarizes our current knowledge on prion assembly heterogeneity down to the subunit level and will discuss its importance with regard to the current molecular principles of the prion replication process.


Subject(s)
Neurodegenerative Diseases/metabolism , PrPC Proteins/metabolism , PrPSc Proteins/metabolism , Animals , Humans , Neurodegenerative Diseases/genetics , PrPC Proteins/chemistry , PrPC Proteins/genetics , PrPSc Proteins/chemistry , PrPSc Proteins/genetics , Protein Folding
7.
Viruses ; 11(3)2019 02 28.
Article in English | MEDLINE | ID: mdl-30823361

ABSTRACT

The abnormal protein aggregates in progressive neurodegenerative disorders, such as Alzheimer's, Parkinson's and prion diseases, adopt a generic structural form called amyloid fibrils. The precise amyloid fold can differ between patients and these differences are related to distinct neuropathological phenotypes of the diseases. A key focus in current research is the molecular mechanism governing such structural diversity, known as amyloid polymorphism. In this review, we focus on our recent work on recombinant prion protein (recPrP) and the use of pressure as a variable for perturbing protein structure. We suggest that the amyloid polymorphism is based on volumetric features. Accordingly, pressure is the thermodynamic parameter that fits best to exploit volume differences within the states of a chemical reaction, since it shifts the equilibrium constant to the state that has the smaller volume. In this context, there are analogies with the process of correct protein folding, the high pressure-induced effects of which have been studied for more than a century and which provides a valuable source of inspiration. We present a short overview of this background and review our recent results regarding the folding, misfolding, and aggregation-disaggregation of recPrP under pressure. We present preliminary experiments aimed at identifying how prion protein fibril diversity is related to the quaternary structure by using pressure and varying protein sequences. Finally, we consider outstanding questions and testable mechanistic hypotheses regarding the multiplicity of states in the amyloid fold.


Subject(s)
Amyloid/genetics , Polymorphism, Genetic , Pressure , Prion Proteins/genetics , Amyloid/chemistry , Humans , Prion Diseases , Prions/chemistry , Protein Aggregates , Protein Conformation , Protein Folding , Thermodynamics
8.
J Math Biol ; 78(1-2): 57-81, 2019 01.
Article in English | MEDLINE | ID: mdl-30099569

ABSTRACT

Alzheimer's disease (AD) is a neuro-degenerative disease affecting more than 46 million people worldwide in 2015. AD is in part caused by the accumulation of A[Formula: see text] peptides inside the brain. These can aggregate to form insoluble oligomers or fibrils. Oligomers have the capacity to interact with neurons via membrane receptors such as prion proteins ([Formula: see text]). This interaction leads [Formula: see text] to be misfolded in oligomeric prion proteins ([Formula: see text]), transmitting a death signal to neurons. In the present work, we aim to describe the dynamics of A[Formula: see text] assemblies and the accumulation of toxic oligomeric species in the brain, by bringing together the fibrillation pathway of A[Formula: see text] peptides in one hand, and in the other hand A[Formula: see text] oligomerization process and their interaction with cellular prions, which has been reported to be involved in a cell-death signal transduction. The model is based on Becker-Döring equations for the polymerization process, with delayed differential equations accounting for structural rearrangement of the different reactants. We analyse the well-posedness of the model and show existence, uniqueness and non-negativity of solutions. Moreover, we demonstrate that this model admits a non-trivial steady state, which is found to be globally stable thanks to a Lyapunov function. We finally present numerical simulations and discuss the impact of model parameters on the whole dynamics, which could constitute the main targets for pharmaceutical industry.


Subject(s)
Alzheimer Disease/metabolism , Models, Neurological , Prion Proteins/metabolism , Alzheimer Disease/etiology , Alzheimer Disease/therapy , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Brain/metabolism , Computational Biology , Computer Simulation , Humans , Kinetics , Mathematical Concepts , Plaque, Amyloid/metabolism , Prion Proteins/chemistry , Protein Aggregation, Pathological/metabolism , Protein Interaction Domains and Motifs
9.
Pathogens ; 7(1)2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29301257

ABSTRACT

Several experimental evidences show that prions are non-conventional pathogens, which physical support consists only in proteins. This finding raised questions regarding the observed prion strain-to-strain variations and the species barrier that happened to be crossed with dramatic consequences on human health and veterinary policies during the last 3 decades. This review presents a focus on a few advances in the field of prion structure and prion strains characterization: from the historical approaches that allowed the concept of prion strains to emerge, to the last results demonstrating that a prion strain may in fact be a combination of a few quasi species with subtle biophysical specificities. Then, we will focus on the current knowledge on the factors that impact species barrier strength and species barrier crossing. Finally, we present probable scenarios on how the interaction of strain properties with host characteristics may account for differential selection of new conformer variants and eventually species barrier crossing.

10.
PLoS Pathog ; 13(9): e1006557, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28880932

ABSTRACT

Mammalian prions, the pathogens that cause transmissible spongiform encephalopathies, propagate by self-perpetuating the structural information stored in the abnormally folded, aggregated conformer (PrPSc) of the host-encoded prion protein (PrPC). To date, no structural model related to prion assembly organization satisfactorily describes how strain-specified structural information is encoded and by which mechanism this information is transferred to PrPC. To achieve progress on this issue, we correlated the PrPSc quaternary structural transition from three distinct prion strains during unfolding and refolding with their templating activity. We reveal the existence of a mesoscopic organization in PrPSc through the packing of a highly stable oligomeric elementary subunit (suPrP), in which the strain structural determinant (SSD) is encoded. Once kinetically trapped, this elementary subunit reversibly loses all replicative information. We demonstrate that acquisition of the templating interface and infectivity requires structural rearrangement of suPrP, in concert with its condensation. The existence of such an elementary brick scales down the SSD support to a small oligomer and provide a basis of reflexion for prion templating process and propagation.


Subject(s)
PrPC Proteins/metabolism , PrPSc Proteins/metabolism , Prion Diseases/metabolism , Protein Unfolding , Animals , Communicable Diseases , Mice , Protein Conformation
11.
Prion ; 11(1): 25-30, 2017 01 02.
Article in English | MEDLINE | ID: mdl-28281924

ABSTRACT

Mapping out regions of PrP influencing prion conversion remains a challenging issue complicated by the lack of prion structure. The portion of PrP associated with infectivity contains the α-helical domain of the correctly folded protein and turns into a ß-sheet-rich insoluble core in prions. Deletions performed so far inside this segment essentially prevented the conversion. Recently we found that deletion of the last C-terminal residues of the helix H2 was fully compatible with prion conversion in the RK13-ovPrP cell culture model, using 3 different infecting strains. This was in agreement with preservation of the overall PrPC structure even after removal of up to one-third of this helix. Prions with internal deletion were infectious for cells and mice expressing the wild-type PrP and they retained prion strain-specific characteristics. We thus identified a piece of the prion domain that is neither necessary for the conformational transition of PrPC nor for the formation of a stable prion structure.


Subject(s)
Prions/chemistry , Amino Acid Sequence , Animals , Cell Line , Mice , Models, Molecular , Prions/pathogenicity , Protein Conformation , Virulence
12.
J Virol ; 90(15): 6963-6975, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27226369

ABSTRACT

UNLABELLED: Mammalian prions are PrP proteins with altered structures causing transmissible fatal neurodegenerative diseases. They are self-perpetuating through formation of beta-sheet-rich assemblies that seed conformational change of cellular PrP. Pathological PrP usually forms an insoluble protease-resistant core exhibiting beta-sheet structures but no more alpha-helical content, loosing the three alpha-helices contained in the correctly folded PrP. The lack of a high-resolution prion structure makes it difficult to understand the dynamics of conversion and to identify elements of the protein involved in this process. To determine whether completeness of residues within the protease-resistant domain is required for prions, we performed serial deletions in the helix H2 C terminus of ovine PrP, since this region has previously shown some tolerance to sequence changes without preventing prion replication. Deletions of either four or five residues essentially preserved the overall PrP structure and mutant PrP expressed in RK13 cells were efficiently converted into bona fide prions upon challenge by three different prion strains. Remarkably, deletions in PrP facilitated the replication of two strains that otherwise do not replicate in this cellular context. Prions with internal deletion were self-propagating and de novo infectious for naive homologous and wild-type PrP-expressing cells. Moreover, they caused transmissible spongiform encephalopathies in mice, with similar biochemical signatures and neuropathologies other than the original strains. Prion convertibility and transfer of strain-specific information are thus preserved despite shortening of an alpha-helix in PrP and removal of residues within prions. These findings provide new insights into sequence/structure/infectivity relationship for prions. IMPORTANCE: Prions are misfolded PrP proteins that convert the normal protein into a replicate of their own abnormal form. They are responsible for invariably fatal neurodegenerative disorders. Other aggregation-prone proteins appear to have a prion-like mode of expansion in brains, such as in Alzheimer's or Parkinson's diseases. To date, the resolution of prion structure remains elusive. Thus, to genetically define the landscape of regions critical for prion conversion, we tested the effect of short deletions. We found that, surprisingly, removal of a portion of PrP, the C terminus of alpha-helix H2, did not hamper prion formation but generated infectious agents with an internal deletion that showed characteristics essentially similar to those of original infecting strains. Thus, we demonstrate that completeness of the residues inside prions is not necessary for maintaining infectivity and the main strain-specific information, while reporting one of the few if not the only bona fide prions with an internal deletion.


Subject(s)
Epithelial Cells/metabolism , PrPC Proteins/genetics , PrPC Proteins/metabolism , Scrapie/metabolism , Sequence Deletion , Amino Acid Sequence , Animals , Mice , Mice, Transgenic , PrPC Proteins/chemistry , Protein Conformation , Sequence Homology, Amino Acid , Sheep , Structure-Activity Relationship
13.
Prion ; 10(1): 1-8, 2016.
Article in English | MEDLINE | ID: mdl-26636374

ABSTRACT

The phenomenon of protein superstructural polymorphism has become the subject of increased research activity. Besides the relevance to explain the existence of multiple prion strains, such activity is partly driven by the recent finding that in many age-related neurodegenerative diseases highly ordered self-associated forms of peptides and proteins might be the structural basis of prion-like processes and strains giving rise to different disease phenotypes. Biophysical studies of prion strains have been hindered by a lack of tools to characterize inherently noncrystalline, heterogeneous and insoluble proteins. A description of the pressure response of prion quaternary structures might change this picture. This is because applying pressure induces quaternary structural changes of PrP, such as misfolding and self-assembly. From the thermodynamics of these processes, structural features in terms of associated volume changes can then be deduced. We suggest that conformation-enciphered prion strains can be distinguished in terms of voids in the interfaces of the constituting PrP protomers and thus in their volumetric properties.


Subject(s)
Prion Proteins/chemistry , Prion Proteins/metabolism , Amyloid , Animals , Humans , Protein Conformation , Protein Folding
14.
Environ Toxicol ; 27(3): 129-36, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21702076

ABSTRACT

Livestock slurry containing antibiotics is a source of contamination of agricultural soils, with possible effects on soil function and micro-organisms. Extracellular oxido-reductases and hydrolases from the fungus T. versicolor and fungal growth were monitored in liquid cultures in the presence of tetracycline, lincomycine, sulfadiazine and ciprofloxacin for 10 days, in order to assess the suitability of these enzymes as biomarkers. Among the conditions of treatment, statistical analysis demonstrated an increase in manganese-dependent peroxidase after exposure to sulfadiazine at 1 mg/L when compared with the control. Acid phosphatase activity was decreased by lincomycine at 1 or 10 mg/L. Conversely, ß-glucosidase activity increased in the presence of this antibiotic at 10 mg/L. In Terrestrial Model Ecosystems spiked with contaminated pig slurry, lincomycine at the concentration of 8 or 80 µg/kg dry soil, and ciprofloxacin at 250 ng/kg dry soil decreased the activity of soil dehydrogenase, when compared with a green slurry treatment, over 28-day incubations. Laccase activity was similarly decreased in the presence of the highest concentration of antibiotics. We determined bacterial and fungal biomasses using Q-PCR. Bacterial biomass was increased in the presence of lincomycine at 80 µg/kg whatever the time of exposure, and to a lesser extent in the presence of ciprofloxacin at 250 ng/kg, but only at day 28. In contrast, both antibiotics, whatever their concentrations, did not modify fungal biomass in soil. In conclusion, we were unable to demonstrate important effects of antibiotics at concentrations found in the agricultural environment.


Subject(s)
Anti-Bacterial Agents/toxicity , Bacteria/drug effects , Fungi/drug effects , Manure , Soil Microbiology , Soil Pollutants/toxicity , Agriculture , Animals , Anti-Bacterial Agents/analysis , Bacteria/growth & development , Basidiomycota/drug effects , Basidiomycota/growth & development , Biomass , Ecosystem , Environmental Monitoring , Fungi/growth & development , Hydrolases/metabolism , Peroxidases/metabolism , Risk Assessment , Soil/chemistry , Soil Pollutants/analysis , Swine , Trametes/drug effects , Trametes/growth & development , beta-Glucosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...