Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 288
Filter
1.
Eur J Immunol ; : e2350848, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38794857

ABSTRACT

Acute injuries trigger an intense activation of the body's defense mechanisms aiming to limit damage and initiate healing. Among the crucial components of the intravascular immune system, the complement system plays a significant role in traumatic injuries, albeit often negatively. It has been suggested that excessive activation of the complement system, transitioning from a localized and timed response to a systemic one, can lead to a loss of its host-protective characteristics. Complement activation products have been associated with the severity of injuries, which sometimes serve as predictors for the onset of organ dysfunctions. Animal studies utilizing complement-targeting agents have provided the basis for considering complement in the management of traumatic injuries in humans. However, numerous studies suggest that the spatial and temporal aspects of complement inhibition are crucial for its efficacy. Understanding the underlying mechanism of the injury is essential to determine where, when, and whether complement inhibition is warranted. Despite the detrimental effects of uncontrolled complement activation, its regulated activation may contribute to essential aspects of healing, such as waste removal and regeneration. This review focuses on the beneficial roles of complement activation in trauma, which are often overlooked or given less consideration but are of immense importance.

2.
FASEB J ; 38(4): e23489, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38407813

ABSTRACT

Physical activity-induced mechanical stimuli play a crucial role in preserving bone mass and structure by promoting bone formation. While the Wnt pathway is pivotal for mediating the osteoblast response to loading, the exact mechanisms are not fully understood. Here, we found that mechanical stimulation induces osteoblastic Wnt1 expression, resulting in an upregulation of key osteogenic marker genes, including Runx2 and Sp7, while Wnt1 knockdown using siRNA prevented these effects. RNAseq analysis identified Plat as a major target through which Wnt1 exerts its osteogenic influence. This was corroborated by Plat depletion using siRNA, confirming its positive role in osteogenic differentiation. Moreover, we demonstrated that mechanical stimulation enhances Plat expression, which, in turn leads to increased expression of osteogenic markers like Runx2 and Sp7. Notably, Plat depletion by siRNA prevented this effect. We have established that Wnt1 regulates Plat expression by activating ß-Catenin. Silencing Wnt1 impairs mechanically induced ß-Catenin activation, subsequently reducing Plat expression. Furthermore, our findings showed that Wnt1 is essential for osteoblasts to respond to mechanical stimulation and induce Runx2 and Sp7 expression, in part through the Wnt1/ß-Catenin/Plat signaling pathway. Additionally, we observed significantly reduced Wnt1 and Plat expression in bones from ovariectomy (OVX)-induced and age-related osteoporotic mouse models compared with non-OVX and young mice, respectively. Overall, our data suggested that Wnt1 and Plat play significant roles in mechanically induced osteogenesis. Their decreased expression in bones from OVX and aged mice highlights their potential involvement in post-menopausal and age-related osteoporosis, respectively.


Subject(s)
Core Binding Factor Alpha 1 Subunit , Osteogenesis , Animals , Female , Mice , beta Catenin/genetics , Core Binding Factor Alpha 1 Subunit/genetics , Osteoblasts , RNA, Small Interfering , Wnt Signaling Pathway , Tissue Plasminogen Activator/metabolism
3.
Bone Res ; 12(1): 12, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38395992

ABSTRACT

Piezo proteins are mechanically activated ion channels, which are required for mechanosensing functions in a variety of cell types. While we and others have previously demonstrated that the expression of Piezo1 in osteoblast lineage cells is essential for bone-anabolic processes, there was only suggestive evidence indicating a role of Piezo1 and/or Piezo2 in cartilage. Here we addressed the question if and how chondrocyte expression of the mechanosensitive proteins Piezo1 or Piezo2 controls physiological endochondral ossification and pathological osteoarthritis (OA) development. Mice with chondrocyte-specific inactivation of Piezo1 (Piezo1Col2a1Cre), but not of Piezo2, developed a near absence of trabecular bone below the chondrogenic growth plate postnatally. Moreover, all Piezo1Col2a1Cre animals displayed multiple fractures of rib bones at 7 days of age, which were located close to the growth plates. While skeletal growth was only mildly affected in these mice, OA pathologies were markedly less pronounced compared to littermate controls at 60 weeks of age. Likewise, when OA was induced by anterior cruciate ligament transection, only the chondrocyte inactivation of Piezo1, not of Piezo2, resulted in attenuated articular cartilage degeneration. Importantly, osteophyte formation and maturation were also reduced in Piezo1Col2a1Cre mice. We further observed increased Piezo1 protein abundance in cartilaginous zones of human osteophytes. Finally, we identified Ptgs2 and Ccn2 as potentially relevant Piezo1 downstream genes in chondrocytes. Collectively, our data do not only demonstrate that Piezo1 is a critical regulator of physiological and pathological endochondral ossification processes, but also suggest that Piezo1 antagonists may be established as a novel approach to limit osteophyte formation in OA.


Subject(s)
Cartilage, Articular , Osteoarthritis , Osteophyte , Animals , Humans , Mice , Cartilage, Articular/pathology , Chondrocytes , Ion Channels/genetics , Osteoarthritis/genetics , Osteogenesis/genetics , Osteophyte/metabolism
4.
Dent Mater ; 40(3): 508-519, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38199893

ABSTRACT

OBJECTIVES: Dental implant placement frequently requires preceding bone augmentation, for example, with hydroxyapatite (HA) or ß-tricalcium phosphate (ß-TCP) granules. However, HA is degraded very slowly in vivo and for ß-TCP inconsistent degradation profiles from too rapid to rather slow are reported. To shorten the healing time before implant placement, rapidly resorbing synthetic materials are of great interest. In this study, we investigated the potential of magnesium phosphates in granular form as bone replacement materials. METHODS: Spherical granules of four different materials were prepared via an emulsion process and investigated in trabecular bone defects in sheep: struvite (MgNH4PO4·6H2O), K-struvite (MgKPO4·6H2O), farringtonite (Mg3(PO4)2) and ß-TCP. RESULTS: All materials except K-struvite exhibited promising support of bone regeneration, biomechanical properties and degradation. Struvite and ß-TCP granules degraded at a similar rate, with a relative granules area of 29% and 30% of the defect area 4 months after implantation, respectively, whereas 18% was found for farringtonite. Only the K-struvite granules degraded too rapidly, with a relative granules area of 2% remaining, resulting in initial fibrous tissue formation and intermediate impairment of biomechanical properties. SIGNIFICANCE: We demonstrated that the magnesium phosphates struvite and farringtonite have a comparable or even improved degradation behavior in vivo compared to ß-TCP. This emphasizes that magnesium phosphates may be a promising alternative to established calcium phosphate bone substitute materials.


Subject(s)
Bone Substitutes , Magnesium Compounds , Magnesium , Phosphates , Sheep , Animals , Struvite , Magnesium/pharmacology , Materials Testing , Calcium Phosphates/pharmacology , Bone Substitutes/pharmacology , Durapatite , Bone Regeneration
5.
Acta Biomater ; 175: 1-26, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38092252

ABSTRACT

Biomechanical characterization of meniscal tissue ex vivo remains a critical need, particularly for the development of suitable meniscus replacements or therapeutic strategies that target the native mechanical properties of the meniscus. To date, a huge variety of test configurations and protocols have been reported, making it extremely difficult to compare the respective outcome parameters, thereby leading to misinterpretation. Therefore, the purpose of this systematic review was to identify test-specific parameters that contribute to uncertainties in the determination of mechanical properties of the human meniscus and its attachments, which derived from common quasi-static and dynamic tests in tension, compression, and shear. Strong evidence was found that the determined biomechanical properties vary significantly depending on the specific test parameters, as indicated by up to tenfold differences in both tensile and compressive properties. Test mode (stress relaxation, creep, cyclic) and configuration (unconfined, confined, in-situ), specimen shape and dimensions, preconditioning regimes, loading rates, post-processing of experimental data, and specimen age and degeneration were identified as the most critical parameters influencing the outcome measures. In conclusion, this work highlights an unmet need for standardization and reporting guidelines to facilitate comparability and may prove beneficial for evaluating the mechanical properties of novel meniscus constructs. STATEMENT OF SIGNIFICANCE: The biomechanical properties of the human meniscus have been studied extensively over the past decades. However, it remains unclear to what extent both test protocol and specimen-related differences are responsible for the enormous variability in material properties. Therefore, this systematic review analyzes the biomechanical properties of the human meniscus in the context of the underlying testing protocol. The most sensitive parameters affecting the determination of mechanical properties were identified and critically discussed. Currently, it is of utmost importance for scientists evaluating potential meniscal scaffolds and biomaterials to have a control group rather than a direct comparison to the literature. Standardization of both test procedures and reporting requirements is needed to improve and accelerate the development of meniscal replacement constructs.


Subject(s)
Menisci, Tibial , Meniscus , Humans , Biomechanical Phenomena , Biocompatible Materials , Compressive Strength
6.
J Orthop Res ; 42(4): 745-752, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37975270

ABSTRACT

The association of knee joint osteoarthritis and altered frictional properties of the degenerated cartilage remains ambiguous, because previous in vitro studies did not consider the characteristic loads and velocities during gait. Therefore, the aim of this study was to quantify the friction behavior of degenerated human cartilage under characteristic stance and swing phase conditions. A dynamic pin-on-plate tribometer was used to test the tribological systems of cartilage against cartilage and cartilage against glass, both with synthetic synovial fluid as lubricant. Using the International Cartilage Repair Society classification, the cartilage samples were assigned to a mildly or a severely degenerated group before testing. Friction coefficients were calculated under stance and swing phase conditions at the beginning of the test and after 600 s of testing. The most important finding of this study is that cartilage against glass couplings displayed significantly higher friction for the severely degenerated samples compared to the mildly degenerated ones, whereas cartilage against cartilage couplings only indicated slight tendencies under the observed test conditions. Consequently, care should be taken when transferring in vitro findings from cartilage against cartilage couplings to predict the friction behavior in vivo. Therefore, we recommend in vitro tribological testing methods which account for gait-like loading conditions and to replicate physiological material pairings, particularly in preclinical medical device validation studies.


Subject(s)
Cartilage, Articular , Osteoarthritis, Knee , Humans , Friction , Cartilage, Articular/physiology , Knee Joint , Synovial Fluid/physiology , Stress, Mechanical
7.
J Orthop Res ; 42(5): 1134-1144, 2024 May.
Article in English | MEDLINE | ID: mdl-37986646

ABSTRACT

Meniscal tearing can increase the contact pressure between the tibia and femur by causing gapping of torn meniscus tissue. The aim of this study was to quantify gapping behavior of radial and longitudinal tears and their impact on peak contact pressure and mean contact area. Twelve porcine knee joints underwent unicondylar, convertible osteotomy for exact tear application and consecutive suturing. Six tantalum marker beads were positioned along meniscus tears. The joints were preloaded with sinusoidal loading cycles ranging between 0 N and 350 N. Peak load was held constant and two synchronized Roentgen stereophotogrammetric analysis x-ray images were obtained to evaluate gapping, peak contact pressure and mean contact area in the native, torn and repaired states. There was no change in gapping or peak contact pressure in longitudinal tear. By contrast, the radial tear led to a significant gapping when compared to the native state, while the inside-out suture was able to restore gapping in parts of the meniscus. An increase in contact pressure after radial tear was detected, which was again normalized after suturing. The most important finding of the study is that longitudinal tears did not gap under pure axial loading, whereas radial tears tended to separate the tear interfaces.


Subject(s)
Meniscus , Tibial Meniscus Injuries , Animals , Swine , Menisci, Tibial/diagnostic imaging , Menisci, Tibial/surgery , Tibial Meniscus Injuries/surgery , Biomechanical Phenomena , Knee Joint/surgery , Rupture
9.
Knee Surg Sports Traumatol Arthrosc ; 31(12): 5554-5564, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37843587

ABSTRACT

PURPOSE: The purpose of this in vitro study was to investigate whether or not hyaluronic acid supplementation improves knee joint friction during osteoarthritis progression under gait-like loading conditions. METHODS: Twelve human cadaveric knee joints were equally divided into mild and moderate osteoarthritic groups. After initial conservative preparation, a passive pendulum setup was used to test the whole joints under gait-like conditions before and after hyaluronic acid supplementation. The friction-related damping properties given by the coefficient of friction µ and the damping coefficient c (in kg m2/s) were calculated from the decaying flexion-extension motion of the knee. Subsequently, tibial and femoral cartilage and meniscus samples were extracted from the joints and tested in an established dynamic pin-on-plate tribometer using synthetic synovial fluid followed by synthetic synovial fluid supplemented with hyaluronic acid as lubricant. Friction was quantified by calculating the coefficient of friction. RESULTS: In the pendulum tests, the moderate OA group indicated significantly lower c0 values (p < 0.05) under stance phase conditions and significantly lower µ0 (p = 0.01) values under swing phase conditions. No degeneration-related statistical differences were found for µend or cend. Friction was not significantly different (p > 0.05) with regard to mild and moderate osteoarthritis in the pin-on-plate tests. Additionally, hyaluronic acid did not affect friction in both, the pendulum (p > 0.05) and pin-on-plate friction tests (p > 0.05). CONCLUSION: The results of this in vitro study suggested that the friction of cadaveric knee joint tissues does not increase with progressing degeneration. Moreover, hyaluronic acid viscosupplementation does not lead to an initial decrease in knee joint friction.


Subject(s)
Cartilage, Articular , Osteoarthritis , Humans , Hyaluronic Acid/therapeutic use , Friction , Knee Joint , Synovial Fluid , Cadaver
10.
Cell Mol Biol Lett ; 28(1): 76, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37777764

ABSTRACT

During aging and after traumatic injuries, cartilage and bone cells are exposed to various pathophysiologic mediators, including reactive oxygen species (ROS), damage-associated molecular patterns, and proinflammatory cytokines. This detrimental environment triggers cellular stress and subsequent dysfunction, which not only contributes to the development of associated diseases, that is, osteoporosis and osteoarthritis, but also impairs regenerative processes. To counter ROS-mediated stress and reduce the overall tissue damage, cells possess diverse defense mechanisms. However, cellular antioxidative capacities are limited and thus ROS accumulation can lead to aberrant cell fate decisions, which have adverse effects on cartilage and bone homeostasis. In this narrative review, we address oxidative stress as a major driver of pathophysiologic processes in cartilage and bone, including senescence, misdirected differentiation, cell death, mitochondrial dysfunction, and impaired mitophagy by illustrating the consequences on tissue homeostasis and regeneration. Moreover, we elaborate cellular defense mechanisms, with a particular focus on oxidative stress response and mitophagy, and briefly discuss respective therapeutic strategies to improve cell and tissue protection.


Subject(s)
Osteoarthritis , Osteoporosis , Humans , Reactive Oxygen Species/metabolism , Oxidative Stress/physiology , Osteoarthritis/metabolism , Cell Differentiation , Cellular Senescence
11.
J Biomater Appl ; 38(3): 438-454, 2023 09.
Article in English | MEDLINE | ID: mdl-37525613

ABSTRACT

Magnesium phosphate-based bone cements, particularly struvite (MgNH4PO4∙6H2O)-forming cements, have attracted increased scientific interest in recent years because they exhibit similar biocompatibility to hydroxyapatite while degrading much more rapidly in vivo. However, other magnesium-based minerals which might be promising are, to date, little studied. Therefore, in this study, we investigated three magnesium-based bone cements: a magnesium oxychloride cement (Mg3(OH)5Cl∙4H2O), an amorphous magnesium phosphate cement based on Mg3(PO4)2, MgO, and NaH2PO4, and a newberyite cement (MgHPO4·3H2O). Because it is not sufficiently clear from the literature to what extent these cements are suitable for clinical use, all of them were characterized and optimized regarding setting time, setting temperature, compressive strength and passive degradation in phosphate-buffered saline. Because the in vitro properties of the newberyite cement were most promising, it was orthotopically implanted into a partially weight-bearing tibial bone defect in sheep. The cement exhibited excellent biocompatibility and degraded more rapidly compared to a hydroxyapatite reference cement; after 4 months, 18% of the cement was degraded. We conclude that the newberyite cement was the most promising candidate of the investigated cements and has clear advantages over calcium phosphate cements, especially in terms of setting time and degradation behavior.


Subject(s)
Bone Cements , Magnesium , Animals , Sheep , Materials Testing , Calcium Phosphates , Compressive Strength , Durapatite
12.
Int J Mol Sci ; 24(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37298085

ABSTRACT

Mast cells may contribute to osteoporosis development, because patients with age-related or post-menopausal osteoporosis exhibit more mast cells in the bone marrow, and mastocytosis patients frequently suffer from osteopenia. We previously showed that mast cells crucially regulated osteoclastogenesis and bone loss in ovariectomized, estrogen-depleted mice in a preclinical model for post-menopausal osteoporosis and found that granular mast cell mediators were responsible for these estrogen-dependent effects. However, the role of the key regulator of osteoclastogenesis, namely, receptor activator of NFκB ligand (RANKL), which is secreted by mast cells, in osteoporosis development has, to date, not been defined. Here, we investigated whether mast-cell-derived RANKL participates in ovariectomy (OVX)-induced bone loss by using female mice with a conditional Rankl deletion. We found that this deletion in mast cells did not influence physiological bone turnover and failed to protect against OVX-induced bone resorption in vivo, although we demonstrated that RANKL secretion was significantly reduced in estrogen-treated mast cell cultures. Furthermore, Rankl deletion in mast cells did not influence the immune phenotype in non-ovariectomized or ovariectomized mice. Therefore, other osteoclastogenic factors released by mast cells might be responsible for the onset of OVX-induced bone loss.


Subject(s)
Bone Resorption , Osteoporosis, Postmenopausal , Osteoporosis , Humans , Mice , Female , Animals , Osteoclasts , Mast Cells , Osteoporosis, Postmenopausal/etiology , Ligands , Osteogenesis , NF-kappa B/pharmacology , Bone Resorption/etiology , Osteoporosis/etiology , Estrogens/pharmacology , Ovariectomy/adverse effects , RANK Ligand/genetics , RANK Ligand/pharmacology
13.
J Bone Miner Res ; 38(8): 1045-1061, 2023 08.
Article in English | MEDLINE | ID: mdl-37314012

ABSTRACT

Major achievements in bone research have always relied on animal models and in vitro systems derived from patient and animal material. However, the use of animals in research has drawn intense ethical debate and the complete abolition of animal experimentation is demanded by fractions of the population. This phenomenon is enhanced by the reproducibility crisis in science and the advance of in vitro and in silico techniques. 3D culture, organ-on-a-chip, and computer models have improved enormously over the last few years. Nevertheless, the overall complexity of bone tissue cross-talk and the systemic and local regulation of bone physiology can often only be addressed in entire vertebrates. Powerful genetic methods such as conditional mutagenesis, lineage tracing, and modeling of the diseases enhanced the understanding of the entire skeletal system. In this review endorsed by the European Calcified Tissue Society (ECTS), a working group of investigators from Europe and the US provides an overview of the strengths and limitations of experimental animal models, including rodents, fish, and large animals, as well the potential and shortcomings of in vitro and in silico technologies in skeletal research. We propose that the proper combination of the right animal model for a specific hypothesis and state-of-the-art in vitro and/or in silico technology is essential to solving remaining important questions in bone research. This is crucial for executing most efficiently the 3R principles to reduce, refine, and replace animal experimentation, for enhancing our knowledge of skeletal biology, and for the treatment of bone diseases that affect a large part of society. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Animal Experimentation , Bone Diseases , Animals , Reproducibility of Results , Models, Animal , Bone and Bones
14.
Nat Commun ; 14(1): 3262, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37277336

ABSTRACT

Mental traumatization is associated with long-bone growth retardation, osteoporosis and increased fracture risk. We revealed earlier that mental trauma disturbs cartilage-to-bone transition during bone growth and repair in mice. Trauma increased tyrosine hydroxylase-expressing neutrophils in bone marrow and fracture callus. Here we show that tyrosine hydroxylase expression in the fracture hematoma of patients correlates positively with acknowledged stress, depression, and pain scores as well as individual ratings of healing-impairment and pain-perception post-fracture. Moreover, mice lacking tyrosine hydroxylase in myeloid cells are protected from chronic psychosocial stress-induced disturbance of bone growth and healing. Chondrocyte-specific ß2-adrenoceptor-deficient mice are also protected from stress-induced bone growth retardation. In summary, our preclinical data identify locally secreted catecholamines in concert with ß2-adrenoceptor signalling in chondrocytes as mediators of negative stress effects on bone growth and repair. Given our clinical data, these mechanistic insights seem to be of strong translational relevance.


Subject(s)
Fracture Healing , Fractures, Bone , Mice , Animals , Catecholamines/metabolism , Neutrophils , Tyrosine 3-Monooxygenase/metabolism , Bony Callus , Fractures, Bone/metabolism , Growth Disorders , Receptors, Adrenergic/metabolism , Pain/metabolism
15.
Adv Healthc Mater ; 12(26): e2300914, 2023 10.
Article in English | MEDLINE | ID: mdl-37224104

ABSTRACT

In clinical practice, hydroxyapatite (HA) cements for bone defect treatment are frequently prepared by mixing a powder component and a liquid component shortly before implantation in the operation theater, which is time-consuming and error-prone. In addition, HA cements are only slightly resorbed, that is, cement residues can still be found in the bone years after implantation. Here, these challenges are addressed by a prefabricated magnesium phosphate cement paste based on glycerol, which is ready-to-use and can be directly applied during surgery. By using a trimodal particle size distribution (PSD), the paste is readily injectable and exhibits a compressive strength of 9-14 MPa after setting. Struvite (MgNH4 PO4 ·6H2 O), dittmarite (MgNH4 PO4 ·H2 O), farringtonite (Mg3 (PO4 )2 ), and newberyite (MgHPO4 ·3H2 O) are the mineral phases present in the set cement. The paste developed here features a promising degradation of 37% after four months in an ovine implantation model, with 25% of the implant area being newly formed bone. It is concluded that the novel prefabricated paste improves application during surgery, has a suitable degradation rate, and supports bone regeneration.


Subject(s)
Bone Cements , Phosphates , Animals , Sheep , Bone Cements/pharmacology , Bone Cements/chemistry , Phosphates/chemistry , Magnesium Compounds/chemistry , Bone Regeneration , Compressive Strength , Calcium Phosphates/pharmacology , Calcium Phosphates/chemistry , Materials Testing
16.
Bone ; 172: 116781, 2023 07.
Article in English | MEDLINE | ID: mdl-37100360

ABSTRACT

External mechanostimulation applied by whole-body low-magnitude high-frequency vibration (LMHFV) was demonstrated to cause no or negative effects on fracture healing in estrogen-competent rodents, while in ovariectomized (OVX), estrogen-deficient rodents bone formation after fracture was improved. Using mice with an osteoblast-specific deletion of the estrogen receptor α (ERα), we demonstrated that ERα signaling in osteoblasts is required for both the anabolic and catabolic effects of LMHFV during bone fracture healing in OVX and non-OVX mice, respectively. Because the vibration effects mediated by ERα were strictly dependent on the estrogen status, we hypothesized different roles of ligand-dependent and -independent ERα signaling. To investigate this assumption in the present study, we used mice with a deletion of the C-terminal activation function (AF) domain-2 of the ERα receptor, which mediated ligand-dependent ERα signaling (ERαAF-20). OVX and non-OVX ERαAF-20 animals were subjected to femur osteotomy followed by vibration treatment. We revealed that estrogen-competent mice lacking the AF-2 domain were protected from LMHFV-induced impaired bone regeneration, while the anabolic effects of vibration in OVX mice were not affected by the AF-2 knockout. RNA sequencing further showed that genes involved in Hippo/Yap1-Taz and Wnt signaling were significantly downregulated upon LMHFV in the presence of estrogen in vitro. In conclusion, we demonstrated that the AF-2 domain is crucial for the negative effects of vibration during bone fracture healing in estrogen-competent mice suggesting that the osteoanabolic effects of vibration are rather mediated by ligand-independent ERα signaling.


Subject(s)
Estrogen Receptor alpha , Fracture Healing , Mice , Animals , Fracture Healing/physiology , Estrogen Receptor alpha/genetics , Furylfuramide , Receptors, Estrogen , Mechanotransduction, Cellular , Ligands , Estrogens/physiology
17.
Int J Mol Sci ; 24(7)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37047116

ABSTRACT

Postmenopausal women are at an increased risk for intervertebral disc degeneration, possibly due to the decrease in oestrogen levels. Low-magnitude, high-frequency vibration (LMHFV) is applied as a therapeutic approach for postmenopausal osteoporosis; however, less is known regarding possible effects on the intervertebral disc (IVD) and whether these may be oestrogen-dependent. The present study investigated the effect of 17ß-oestradiol (E2) and LMHFV in an IVD organ culture model. Bovine IVDs (n = 6 IVDs/group) were treated with either (i) E2, (ii) LMHFV or (iii) the combination of E2 + LMHFV for 2 or 14 days. Minor changes in gene expression, cellularity and matrix metabolism were observed after E2 treatment, except for a significant increase in matrix metalloproteinase (MMP)-3 and interleukin (IL)-6 production. Interestingly, LMHFV alone induced cell loss and increased IL-6 production compared to the control. The combination of E2 + LMHFV induced a protective effect against cell loss and decreased IL-6 production compared to the LMHFV group. This indicates possible benefits of oestrogen therapy for the IVDs of postmenopausal women undergoing LMHFV exercises.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Animals , Cattle , Female , Humans , Interleukin-6/metabolism , Cell Survival , Vibration , Organ Culture Techniques , Intervertebral Disc/metabolism , Intervertebral Disc Degeneration/metabolism , Estrogens/pharmacology , Estrogens/metabolism
18.
J Bone Miner Res ; 38(5): 749-764, 2023 05.
Article in English | MEDLINE | ID: mdl-36891752

ABSTRACT

Despite considerable improvement in fracture care, 5%-10% of all fractures still heal poorly or result in nonunion formation. Therefore, there is an urgent need to identify new molecules that can be used to improve bone fracture healing. One activator of the Wnt-signaling cascade, Wnt1, has recently gained attention for its intense osteoanabolic effect on the intact skeleton. The aim of the present study was to investigate whether Wnt1 might be a promising molecule to accelerate fracture healing both in skeletally healthy and osteoporotic mice that display a diminished healing capacity. Transgenic mice for a temporary induction of Wnt1 specifically in osteoblasts (Wnt1-tg) were subjected to femur osteotomy. Non-ovariectomized and ovariectomized Wnt1-tg mice displayed significantly accelerated fracture healing based on a strong increase in bone formation in the fracture callus. Transcriptome profiling revealed that Hippo/yes1-associated transcriptional regulator (YAP)-signaling and bone morphogenetic protein (BMP) signaling pathways were highly enriched in the fracture callus of Wnt1-tg animals. Immunohistochemical staining confirmed increased activation of YAP1 and expression of BMP2 in osteoblasts in the fracture callus. Therefore, our data indicate that Wnt1 boosts bone formation during fracture healing via YAP/BMP signaling both under healthy and osteoporotic conditions. To further test a potential translational application of Wnt1, we applied recombinant Wnt1 embedded into a collagen gel during critical-size bone-defect repair. Mice treated with Wnt1 displayed increased bone regeneration compared to control mice accompanied by increased YAP1/BMP2 expression in the defect area. These findings are of high clinical relevance because they indicate that Wnt1 could be used as a new therapeutic agent to treat orthopedic complications in the clinic. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Fracture Healing , Fractures, Bone , Mice , Animals , Fracture Healing/physiology , Osteogenesis/physiology , Fractures, Bone/metabolism , Bony Callus/metabolism , Mice, Transgenic , Wnt Signaling Pathway
19.
Biomolecules ; 13(2)2023 01 22.
Article in English | MEDLINE | ID: mdl-36830586

ABSTRACT

The terminal complement complex (TCC) has been described as a potential driver in the pathogenesis of posttraumatic osteoarthritis (PTOA). However, sublytic TCC deposition might also play a crucial role in bone development and regeneration. Therefore, we elucidated the effects of TCC on joint-related tissues using a rabbit PTOA model. In brief, a C6-deficient rabbit breed was characterized on genetic, protein, and functional levels. Anterior cruciate ligament transection (ACLT) was performed in C6-deficient (C6-/-) and C6-sufficient (C6+/-) rabbits. After eight weeks, the progression of PTOA was determined histologically. Moreover, the structure of the subchondral bone was evaluated by µCT analysis. C6 deficiency could be attributed to a homozygous 3.6 kb deletion within the C6 gene and subsequent loss of the C5b binding site. Serum from C6-/- animals revealed no hemolytic activity. After ACLT surgery, joints of C6-/- rabbits exhibited significantly lower OA scores, including reduced cartilage damage, hypocellularity, cluster formation, and osteophyte number, as well as lower chondrocyte apoptosis rates and synovial prostaglandin E2 levels. Moreover, ACLT surgery significantly decreased the trabecular number in the subchondral bone of C6-/- rabbits. Overall, the absence of TCC protected from injury-induced OA progression but had minor effects on the micro-structure of the subchondral bone.


Subject(s)
Cartilage, Articular , Osteoarthritis , Animals , Rabbits , Complement Membrane Attack Complex/pharmacology , Cartilage, Articular/pathology , Osteoarthritis/pathology , Anterior Cruciate Ligament/pathology , Anterior Cruciate Ligament/surgery , Chondrocytes/pathology
20.
JBMR Plus ; 7(2): e10711, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36751416

ABSTRACT

Mutations of the postsynaptic scaffold protein Shank2 lead to autism spectrum disorders (ASD). These patients frequently suffer from higher fracture risk. Here, we investigated whether Shank2 directly regulates bone mass. We show that Shank2 is expressed in bone and that Shank2 levels are increased during osteoblastogenesis. Knockdown of Shank2 by siRNA targeting the encoding regions for PDZ and SAM domain inhibits osteoblastogenesis of primary murine calvarial osteoblasts. Shank2 knockout mice (Shank2 -/-) have a decreased bone mass due to reduced osteoblastogenesis and bone formation, whereas bone resorption remains unaffected. Induced pluripotent stem cells (iPSCs)-derived osteoblasts from a loss-of-function Shank2 mutation in a patient showed a significantly reduced osteoblast differentiation potential. Moreover, silencing of known Shank2 interacting proteins revealed that a majority of them promote osteoblast differentiation. From this we conclude that Shank2 and interacting proteins known from the central nervous system are decisive regulators in osteoblast differentiation. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

SELECTION OF CITATIONS
SEARCH DETAIL