Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 131(1): 015102, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37478441

ABSTRACT

In the dynamic-shell (DS) concept [V. N. Goncharov et al., Novel Hot-Spot Ignition Designs for Inertial Confinement Fusion with Liquid-Deuterium-Tritium Spheres, Phys. Rev. Lett. 125, 065001 (2020).PRLTAO0031-900710.1103/PhysRevLett.125.065001] for laser-driven inertial confinement fusion the deuterium-tritium fuel is initially in the form of a homogeneous liquid inside a wetted-foam spherical shell. This fuel is ignited using a conventional implosion, which is preceded by a initial compression of the fuel followed by its expansion and dynamic formation of a high-density fuel shell with a low-density interior. This Letter reports on a scaled-down, proof-of-principle experiment on the OMEGA laser demonstrating, for the first time, the feasibility of DS formation. A shell is formed by convergent shocks launched by laser pulses at the edge of a plasma sphere, with the plasma itself formed as a result of laser-driven compression and relaxation of a surrogate plastic-foam ball target. Three x-ray diagnostics, namely, 1D spatially resolved self-emission streaked imaging, 2D self-emission framed imaging, and backlighting radiography, have shown good agreement with the predicted evolution of the DS and its stability to low Legendre mode perturbations introduced by laser irradiation and target asymmetries.

2.
Rev Sci Instrum ; 93(9): 093530, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36182469

ABSTRACT

A three-dimensional model of the hot-spot x-ray emission has been developed and applied to the study of low-mode drive asymmetries in direct-drive inertial confinement fusion implosions on OMEGA with cryogenic deuterium-tritium targets. The steady-state model assumes an optically thin plasma and the data from four x-ray diagnostics along quasi-orthogonal lines of sight are used to obtain a tomographic reconstruction of the hot spot. A quantitative analysis of the hot-spot shape is achieved by projecting the x-ray emission into the diagnostic planes and comparing this projection to the measurements. The model was validated with radiation-hydrodynamic simulations assuming a mode-2 laser illumination perturbation resulting in an elliptically shaped hot spot, which was accurately reconstructed by the model using synthetic x-ray images. This technique was applied to experimental data from implosions in polar-direct-drive illumination geometry with a deliberate laser-drive asymmetry, and the hot-spot emission was reconstructed using spherical-harmonic modes of up to ℓ = 3. A 10% stronger drive on the equator relative to that on the poles resulted in a prolate-shaped hot spot at stagnation with a large negative A2,0 coefficient of A2,0 = -0.47 ± 0.03, directly connecting the modal contribution of the hot-spot shape with the modal contribution in laser-drive asymmetry.

3.
Phys Rev E ; 106(1): L013201, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35974626

ABSTRACT

In laser-driven implosions for laboratory fusion, the comparison of hot-spot x-ray yield to neutron production can serve to infer hot-spot mix. For high-performance direct-drive implosions, this ratio depends sensitively on the degree of equilibration between the ion and electron fluids. A scaling for x-ray yield as a function of neutron yield and characteristic ion and electron hot-spot temperatures is developed on the basis of simulations with varying degrees of equilibration. We apply this model to hot-spot x-ray measurements of direct-drive cryogenic implosions typical of the direct-drive designs with best ignition metrics. The comparison of the measured x-ray and neutron yields indicates that hot-spot mix, if present, is below a sensitivity estimated as ∼2% by-atom mix of ablator plastic into the hot spot.

4.
Phys Rev Lett ; 127(10): 105001, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34533333

ABSTRACT

Statistical modeling of experimental and simulation databases has enabled the development of an accurate predictive capability for deuterium-tritium layered cryogenic implosions at the OMEGA laser [V. Gopalaswamy et al.,Nature 565, 581 (2019)10.1038/s41586-019-0877-0]. In this letter, a physics-based statistical mapping framework is described and used to uncover the dependencies of the fusion yield. This model is used to identify and quantify the degradation mechanisms of the fusion yield in direct-drive implosions on OMEGA. The yield is found to be reduced by the ratio of laser beam to target radius, the asymmetry in inferred ion temperatures from the ℓ=1 mode, the time span over which tritium fuel has decayed, and parameters related to the implosion hydrodynamic stability. When adjusted for tritium decay and ℓ=1 mode, the highest yield in OMEGA cryogenic implosions is predicted to exceed 2×10^{14} fusion reactions.

5.
Phys Rev E ; 103(2-1): 023201, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33736107

ABSTRACT

In deuterium-tritium cryogenic implosions, hot-spot x-ray self-emission is observed to begin at a larger shell radius than is predicted by a one-dimensional radiation-hydrodynamic implosion model. Laser-imprint is shown to explain the observation for a low-adiabat implosion. For more-stable implosions the data are not described by the imprint model and suggest there are additional sources of decompression of the dense fuel.

6.
Phys Rev Lett ; 125(6): 065001, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32845678

ABSTRACT

A new class of ignition designs is proposed for inertial confinement fusion experiments. These designs are based on the hot-spot ignition approach, but instead of a conventional target that is comprised of a spherical shell with a thin frozen deuterium-tritium (DT) layer, a liquid DT sphere inside a wetted-foam shell is used, and the lower-density central region and higher-density shell are created dynamically by appropriately shaping the laser pulse. These offer several advantages, including simplicity in target production (suitable for mass production for inertial fusion energy), absence of the fill tube (leading to a more-symmetric implosion), and lower sensitivity to both laser imprint and physics uncertainty in shock interaction with the ice-vapor interface. The design evolution starts by launching an ∼1-Mbar shock into a DT sphere. After bouncing from the center, the reflected shock reaches the outer surface of the sphere and the shocked material starts to expand outward. Supporting ablation pressure ultimately stops such expansion and subsequently launches a shock toward the target center, compressing the ablator and fuel, and forming a shell. The shell is then accelerated and fuel is compressed by appropriately shaping the drive laser pulse, forming a hot spot using the conventional or shock ignition approaches. This Letter demonstrates the feasibility of the new concept using hydrodynamic simulations and discusses the advantages and disadvantages of the concept compared with more-traditional inertial confinement fusion designs.

7.
Phys Rev Lett ; 123(6): 065001, 2019 Aug 09.
Article in English | MEDLINE | ID: mdl-31491185

ABSTRACT

Using highly resolved 3D radiation-hydrodynamic simulations, we identify a novel mechanism by which the deleterious impact of laser imprinting is mitigated in direct-drive inertial confinement fusion. Unsupported shocks and associated rarefaction flows, commonly produced with short laser bursts, are found to reduce imprint modulations prior to target acceleration. Optimization through the choice of laser pulse with picket(s) and target dimensions may improve the stability of lower-adiabat designs, thus providing the necessary margin for ignition-relevant implosions.

8.
Nature ; 565(7741): 581-586, 2019 01.
Article in English | MEDLINE | ID: mdl-30700868

ABSTRACT

Focusing laser light onto a very small target can produce the conditions for laboratory-scale nuclear fusion of hydrogen isotopes. The lack of accurate predictive models, which are essential for the design of high-performance laser-fusion experiments, is a major obstacle to achieving thermonuclear ignition. Here we report a statistical approach that was used to design and quantitatively predict the results of implosions of solid deuterium-tritium targets carried out with the 30-kilojoule OMEGA laser system, leading to tripling of the fusion yield to its highest value so far for direct-drive laser fusion. When scaled to the laser energies of the National Ignition Facility (1.9 megajoules), these targets are predicted to produce a fusion energy output of about 500 kilojoules-several times larger than the fusion yields currently achieved at that facility. This approach could guide the exploration of the vast parameter space of thermonuclear ignition conditions and enhance our understanding of laser-fusion physics.

9.
Phys Rev Lett ; 120(12): 125001, 2018 Mar 23.
Article in English | MEDLINE | ID: mdl-29694102

ABSTRACT

Multiple self-emission x-ray images are used to measure tomographically target modes 1, 2, and 3 up to the end of the target acceleration in direct-drive implosions on OMEGA. Results show that the modes consist of two components: the first varies linearly with the laser beam-energy balance and the second is static and results from physical effects including beam mistiming, mispointing, and uncertainty in beam energies. This is used to reduce the target low modes of low-adiabat implosions from 2.2% to 0.8% by adjusting the beam-energy balance to compensate these static modes.

10.
Phys Rev E ; 95(5-1): 051202, 2017 May.
Article in English | MEDLINE | ID: mdl-28618558

ABSTRACT

A series of direct-drive implosions performed on OMEGA were used to isolate the effect of an adiabat on the in-flight shell thickness. The maximum in-flight shell thickness was measured to decrease from 75±2 to 60±2µm when the adiabat of the shell was reduced from 6 to 4.5, but when decreasing the adiabat further (1.8), the shell thickness increased to 75±2µm due to the growth of the Rayleigh-Taylor instability. Hydrodynamic simulations suggest that a laser imprint is the dominant seed for these nonuniformities.

11.
Phys Rev Lett ; 118(13): 135001, 2017 Mar 31.
Article in English | MEDLINE | ID: mdl-28409959

ABSTRACT

We present narrow-band self-emission x-ray images from a titanium tracer layer placed at the fuel-shell interface in 60-laser-beam implosion experiments at the OMEGA facility. The images are acquired during deceleration with inferred convergences of ∼9-14. Novel here is that a systematically observed asymmetry of the emission is linked, using full sphere 3D implosion modeling, to performance-limiting low mode asymmetry of the drive.

13.
Phys Rev Lett ; 117(2): 025001, 2016 Jul 08.
Article in English | MEDLINE | ID: mdl-27447511

ABSTRACT

A record fuel hot-spot pressure P_{hs}=56±7 Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium-tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility, these implosions achieved a Lawson parameter ∼60% of the value required for ignition [A. Bose et al., Phys. Rev. E 93, 011201(R) (2016)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure is approximately 40% lower. Three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance.

14.
Phys Rev Lett ; 114(21): 215003, 2015 May 29.
Article in English | MEDLINE | ID: mdl-26066442

ABSTRACT

The magnetic fields generated at the surface of a laser-irradiated planar solid target are mapped using ultrafast proton radiography. Thick (50 µm) plastic foils are irradiated with 4-kJ, 2.5-ns laser pulses focused to an intensity of 4×10^{14} W/cm^{2}. The data show magnetic fields concentrated at the edge of the laser-focal region, well within the expanding coronal plasma. The magnetic-field spatial distribution is tracked and shows good agreement with 2D resistive magnetohydrodynamic simulations using the code draco when the Biermann battery source, fluid and Nernst advection, resistive magnetic diffusion, and Righi-Leduc heat flow are included.

15.
Phys Rev Lett ; 114(15): 155002, 2015 Apr 17.
Article in English | MEDLINE | ID: mdl-25933317

ABSTRACT

Measurements of the conduction-zone length (110±20 µm at t=2.8 ns), the averaged mass ablation rate of the deuterated plastic (7.95±0.3 µg/ns), shell trajectory, and laser absorption are made in direct-drive cryogenic implosions and are used to quantify the electron thermal transport through the conduction zone. Hydrodynamic simulations that use nonlocal thermal transport and cross-beam energy transfer models reproduce these experimental observables. Hydrodynamic simulations that use a time-dependent flux-limited model reproduce the measured shell trajectory and the laser absorption but underestimate the mass ablation rate by ∼10% and the length of the conduction zone by nearly a factor of 2.

16.
Rev Sci Instrum ; 85(11): 11D616, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25430192

ABSTRACT

A technique to measure the mass ablation rate in direct-drive inertial confinement fusion implosions using a pinhole x-ray framing camera is presented. In target designs consisting of two layers of different materials, two x-ray self-emission peaks from the coronal plasma were measured once the laser burned through the higher-Z outer layer. The location of the inner peak is related to the position of the ablation front and the location of the outer peak corresponds to the position of the interface of the two layers in the plasma. The emergence of the second peak was used to measure the burnthrough time of the outer layer, giving the average mass ablation rate of the material and instantaneous mass remaining. By varying the thickness of the outer layer, the mass ablation rate can be obtained as a function of time. Simulations were used to validate the methods and verify that the measurement techniques are not sensitive to perturbation growth at the ablation surface.

17.
Phys Rev Lett ; 112(14): 145001, 2014 Apr 11.
Article in English | MEDLINE | ID: mdl-24765976

ABSTRACT

Half-harmonic emission spectra and images taken during directly driven implosions show that the two-plasmon decay (TPD) instability is driven nonuniformly over the target surface and that multibeam effects dominate this instability. The images show a spatially limited extent of the TPD instability. A prominent spectral feature is used to determine the electron temperature in the corona. Near threshold the temperatures agree with one-dimensional hydrodynamic predictions but exceed them by ∼10% above the TPD threshold. Two-dimensional hydrodynamic simulations indicate that a significant part (∼20%) of the laser intensity must be locally absorbed by the TPD instability (i.e., by collisional damping of the electron plasma waves) to maintain these temperature islands.

18.
Phys Rev Lett ; 110(14): 145001, 2013 Apr 05.
Article in English | MEDLINE | ID: mdl-25166997

ABSTRACT

Spherically symmetric direct-drive-ignition designs driven by laser beams with a focal-spot size nearly equal to the target diameter suffer from energy losses due to crossed-beam energy transfer (CBET). Significant reduction of CBET and improvements in implosion hydrodynamic efficiency can be achieved by reducing the beam diameter. Narrow beams increase low-mode perturbations of the targets because of decreased illumination uniformity that degrades implosion performance. Initiating an implosion with nominal beams (equal in size to the target diameter) and reducing the beam diameter by ∼ 30%-40% after developing a sufficiently thick target corona, which smooths the perturbations, mitigate CBET while maintaining low-mode target uniformity in ignition designs with a fusion gain ≫ 1.

19.
Phys Rev Lett ; 111(24): 245005, 2013 Dec 13.
Article in English | MEDLINE | ID: mdl-24483672

ABSTRACT

The success of direct-drive implosions depends critically on the ability to create high ablation pressures (∼100 Mbar) and accelerating the imploding shell to ignition-relevant velocities (>3.7×10(7 ) cm/s) using direct laser illumination. This Letter reports on an experimental study of the conversion of absorbed laser energy into kinetic energy of the shell (rocket efficiency) where different ablators were used to vary the ratio of the atomic number to the atomic mass. The implosion velocity of Be shells is increased by 20% compared to C and CH shells in direct-drive implosions when a constant initial target mass is maintained. These measurements are consistent with the predicted increase in the rocket efficiency of 28% for Be and 5% for C compared to a CH ablator.

20.
Rev Sci Instrum ; 83(10): 10E530, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23127037

ABSTRACT

A technique to measure the shell trajectory in direct-drive inertial confinement fusion implosions is presented. The x-ray self emission of the target is measured with an x-ray framing camera. Optimized filtering limits the x-ray emission from the corona plasma, isolating a sharp intensity gradient very near the ablation surface. This enables one to measure the radius of the imploding shell with an accuracy better than 1 µm and to determine a 200-ps average velocity to better than 2%.

SELECTION OF CITATIONS
SEARCH DETAIL
...