Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 32(1): 229-243, 2023 01.
Article in English | MEDLINE | ID: mdl-34779067

ABSTRACT

Symbiotic fungi mediate important energy and nutrient transfers in terrestrial ecosystems. Environmental change can lead to shifts in communities of symbiotic fungi, but the consequences of these shifts for nutrient dynamics among symbiotic partners are poorly understood. Here, we assessed variation in carbon (C), nitrogen (N) and phosphorus (P) in tissues of arbuscular mycorrhizal (AM) fungi and a host plant (Medicago sativa) in response to experimental warming and drought. We linked compositional shifts in AM fungal communities in roots and soil to variation in hyphal chemistry by using high-throughput DNA sequencing and joint species distribution modelling. Compared to plants, AM hyphae was 43% lower in (C) and 24% lower in (N) but more than nine times higher in (P), with significantly lower C:N, C:P and N:P ratios. Warming and drought resulted in increases in (P) and reduced C:P and N:P ratios in all tissues, indicating fungal P accumulation was exacerbated by climate-associated stress. Warming and drought modified the composition of AM fungal communities, and many of the AM fungal genera that were linked to shifts in mycelial chemistry were also negatively impacted by climate variation. Our study offers a unified framework to link climate change, fungal community composition, and community-level functional traits. Thus, our study provides insight into how environmental change can alter ecosystem functions via the promotion or reduction of fungal taxa with different stoichiometric characteristics and responses.


Subject(s)
Mycobiome , Mycorrhizae , Ecosystem , Mycobiome/genetics , Droughts , Plant Roots/microbiology , Soil/chemistry , Plants/microbiology , Soil Microbiology , Fungi/genetics
2.
Front Plant Sci ; 13: 836968, 2022.
Article in English | MEDLINE | ID: mdl-35321443

ABSTRACT

Shifts in the timing, intensity and/or frequency of climate extremes, such as severe drought and heatwaves, can generate sustained shifts in ecosystem function with important ecological and economic impacts for rangelands and managed pastures. The Pastures and Climate Extremes experiment (PACE) in Southeast Australia was designed to investigate the impacts of a severe winter/spring drought (60% rainfall reduction) and, for a subset of species, a factorial combination of drought and elevated temperature (ambient +3°C) on pasture productivity. The experiment included nine common pasture and Australian rangeland species from three plant functional groups (C3 grasses, C4 grasses and legumes) planted in monoculture. Winter/spring drought resulted in productivity declines of 45% on average and up to 74% for the most affected species (Digitaria eriantha) during the 6-month treatment period, with eight of the nine species exhibiting significant yield reductions. Despite considerable variation in species' sensitivity to drought, C4 grasses were more strongly affected by this treatment than C3 grasses or legumes. Warming also had negative effects on cool-season productivity, associated at least partially with exceedance of optimum growth temperatures in spring and indirect effects on soil water content. The combination of winter/spring drought and year-round warming resulted in the greatest yield reductions. We identified responses that were either additive (Festuca), or less-than-additive (Medicago), where warming reduced the magnitude of drought effects. Results from this study highlight the sensitivity of diverse pasture species to increases in winter and spring drought severity similar to those predicted for this region, and that anticipated benefits of cool-season warming are unlikely to be realized. Overall, the substantial negative impacts on productivity suggest that future, warmer, drier climates will result in shortfalls in cool-season forage availability, with profound implications for the livestock industry and natural grazer communities.

3.
Bull Environ Contam Toxicol ; 102(4): 468-476, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30852637

ABSTRACT

Crude oil spillage effects on the environment often wane with time, making late remediation of affected soils look irrelevant. Physicochemical quality of a sandy soil under 9-year-old spillage was compared with that of adjacent unaffected site in southern Nigeria. Soil bulk density and equilibrated water content were higher in affected than unaffected site, but permeability did not change. The spillage increased soil pH, organic carbon, total nitrogen and available phosphorus by about 7%, 1700%, 133% and - 16%, respectively. It lowered divalent exchangeable bases/acidity but raised base saturation. It increased total petroleum hydrocarbon (PHCt) and micronutrients/heavy metals (Fe, Mn, Zn, Cd and Pb), all of which were below their critical limits in soils by regulatory bodies. Soil pH, organic carbon and PHCt correlated positively with all five micronutrients/heavy metals; total nitrogen did so with Zn and Pb. Nine-year period may be insufficient for spillage effects in sandy soils to cease to be evident. Such effects for PHCt and heavy metals, however, are deemed tolerable for ecological safety.


Subject(s)
Metals, Heavy/analysis , Petroleum/analysis , Soil Pollutants/analysis , Soil/chemistry , Nigeria , Nitrogen/analysis , Phosphorus/analysis , Time Factors , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...