Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(27): 18530-18537, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38869073

ABSTRACT

As the sizes of noble metal catalysts, such as platinum, have been successfully minimized, fundamental insights into the electronic properties of metal sub-nanoclusters are increasingly sought for optimizing their catalytic performance. However, it is difficult to rationalize the catalytic activities of metal sub-nanoclusters owing to their more complex electronic structure compared with those of small molecules and bulky solids. In this study, the adsorption of molecular oxygen on a Pt13 sub-nanocluster supported on a graphene layer was analyzed using density functional theory. Unlike bulk Pt, the Pt13 sub-nanocluster has multiple adsorption sites, and the adsorption energy depends strongly on the type of adsorption site. The O2 adsorption energy does not correlate with the transferred charge between O2 and the Pt13 moiety; therefore, to elucidate the differences in the adsorption sites, we propose an original approach for analyzing the electronic structure change in metal sub-nanoclusters caused by molecular adsorption. Our analysis of the integrated local density of state (LDOS) revealed that O2 adsorption on the Pt13 sub-nanocluster has a distinct feature, different from that on a smaller Pt2 cluster or rather a larger Pt slab. The change in the electronic structure of the Pt13 moiety was primarily observed near the Fermi level, different from that of the Pt slab whose DOS was distributed over a wide energy range. Furthermore, the change in the integrated LDOS correlated well with the O2 adsorption energy on the Pt13 sub-nanocluster.

2.
Adv Sci (Weinh) ; 11(10): e2307055, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38196298

ABSTRACT

Materials that intrinsically exhibit localized surface plasmon resonance (LSPR) in the visible region have been predominantly researched on nanoparticles (NPs) composed of coinage metals, namely Au, Ag, and Cu. Here, as a coinage metal-free intermetallic NPs, colloidal PtIn2 NPs with a C1 (CaF2 -type) crystal structure are synthesized by the liquid phase method, which evidently exhibit LSPR at wavelengths similar to face-centered cubic (fcc)-Au NPs. Computational simulations pointed out differences in the electronic structure and photo-excited electron dynamics between C1-PtIn2 and fcc-Au NPs; reduces interband transition and stronger screening with smaller number of bound d-electrons compare with fcc-Au are unique origins of the visible plasmonic nature of C1-PtIn2 NPs. These results strongly indicate that the intermetallic NPs are expected to address the development of alternative plasmonic materials by tuning their crystal structure and composition.

SELECTION OF CITATIONS
SEARCH DETAIL