Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunopharmacol ; 122: 110608, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37441811

ABSTRACT

Allergic asthma is caused by chronic inflammation and hyper-responsiveness of the airway and is thought to be mediated by adaptive T helper type 2 (Th2)-driven immunity. However, recent studies have demonstrated that neuropeptide calcitonin gene-related peptide (CGRP)-mediated activation of group 2 innate lymphoid cells (ILC2s) may contribute to the development of asthma pathogenesis. Here, we investigated the therapeutic effects of the systemic administration of rimegepant, a CGRP receptor antagonist, on allergic asthma. Hyperplasia of CGRP-immunoreactive pulmonary neuroendocrine cells (PNECs) was observed in ovalbumin (OVA)-induced asthmatic mice. Concomitant with this, we observed an increase in the content of total lung CGRP. Upon antigen challenge, the concentration of plasma CGRP was transiently upregulated, whereas CGRP immunoreactivity within PNECs was intensively downregulated, suggesting that PNECs were the most likely source of CGRP. When rimegepant was administered according to CGRP kinetics, it suppressed asthma phenotypes, including airway hyper-responsiveness, infiltration of inflammatory cells in bronchoalveolar lavage fluid (BALF), hyperplasia of mucus-producing cells, and production of the Th2 cytokine IL-5. Moreover, we observed a decrease in the number of ILC2s and their capacity for IL-5 release in the presence of IL-33 in rimegepant-treated mice. In the allergic asthma model, rimegepant suppressed the activation of ILC2s mediated by PNEC-derived CGRP and subsequently impaired adaptive Th2-driven immunity, which ameliorated asthmatic phenotypes. Thus, an anti-CGRP signal strategy to target ILC2 will be a novel and attractive approach for treating allergic asthma that is refractory to other treatments.


Subject(s)
Asthma , Immunity, Innate , Mice , Animals , Calcitonin Gene-Related Peptide Receptor Antagonists , Down-Regulation , Interleukin-5 , Hyperplasia/pathology , Lymphocytes , Lung/pathology , Cytokines/metabolism , Bronchoalveolar Lavage Fluid , Calcitonin Gene-Related Peptide/metabolism , Mice, Inbred BALB C , Ovalbumin
2.
Int Arch Allergy Immunol ; 184(8): 797-807, 2023.
Article in English | MEDLINE | ID: mdl-37231861

ABSTRACT

INTRODUCTION: Asthma is an inflammatory reaction mediated by type 2 helper T (Th2) cells and is known to increase eosinophil levels. Our previous study showed that stress-related asthma can cause neutrophilic and eosinophilic airway inflammation by suppressing immune tolerance. However, the mechanism of stress-induced neutrophilic and eosinophilic airway inflammation remains unclear. Therefore, to elucidate the cause of neutrophilic and eosinophilic inflammation, we investigated the immune response during the induction of airway inflammation. In addition, we focused on the relationship between immune response modulation immediately after stress exposure and the development of airway inflammation. METHODS: Asthmatic mice were induced by three phases using female BALB/c mice. During the first phase, the mice were made to inhale ovalbumin (OVA) to induce immune tolerance before sensitization. Some mice were exposed to restraint stress during the induction of immune tolerance. In the second phase, the mice were sensitized with OVA/alum intraperitoneal injections. In the final phase, onset of asthma was induced through OVA exposure. Asthma development was evaluated based on airway inflammation and T-cell differentiation. Microarray and qPCR analyses were used to enumerate candidate factors to investigate the starting point of immunological modification immediately after stress exposure. Furthermore, we focused on interleukin-1ß (IL-1ß), which initiates these immune modifications, and performed experiments using its receptor blocker interleukin-1 receptor antagonist (IL-1RA). RESULTS: Stress exposure during immune tolerance induction increased eosinophil and neutrophil airway infiltration. This inflammation was associated with decreased T regulatory cell levels and increased Th2 and Th17 levels in bronchial lymph node cells. Microarray and qPCR analyses showed that the initiation of Th17 differentiation might be triggered by stress exposure during tolerance induction. IL-1RA administration during stress exposure suppressed neutrophilic and eosinophilic airway inflammation via Th17 reduction and Treg increase. CONCLUSIONS: Our results show that psychological stress causes both eosinophilic and neutrophilic inflammatory responses due to the breakdown of immune tolerance. Furthermore, stress-induced inflammation can be abolished using IL-1RA.


Subject(s)
Asthma , Interleukin 1 Receptor Antagonist Protein , Animals , Female , Mice , Disease Models, Animal , Immune Tolerance , Immunity , Inflammation , Interleukin 1 Receptor Antagonist Protein/adverse effects , Interleukin 1 Receptor Antagonist Protein/metabolism , Interleukin-1beta/metabolism , Mice, Inbred BALB C , Neutrophils , Ovalbumin , Stress, Psychological/complications , Th17 Cells , Th2 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...