Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Opt Express ; 27(24): 35962-35970, 2019 Nov 25.
Article in English | MEDLINE | ID: mdl-31878760

ABSTRACT

Few-mode EDFAs with low channel crosstalk can replace multiple parallel single-mode EDFAs in single-mode fiber trunk lines and networks. Here we proposed a low-crosstalk few-mode EDFA by exploiting the unitary property of the coupling matrix of a symmetric photonic lantern. We experimentally demonstrated a 3-channel few-mode EDFA using retro-reflection of a 3-mode symmetric photonic lantern. The small signal gain for all three channels are measured to be larger than 25 dB over the entire C-band and the crosstalks are below -10 dB.

2.
Opt Lett ; 43(16): 3949-3952, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-30106924

ABSTRACT

A low-loss Raman-assisted phase sensitive amplifier (PSA) with a ∼20 dB signal net gain is experimentally demonstrated. The amplitude and phase adjustment for PSA are achieved by using non-uniform Raman gain and a tunable fiber Bragg grating (FBG), respectively. The total component loss of the system is measured to be ∼8 dB. By tuning the FBG central wavelength, (1) an up to 5.6 dB signal gain improvement is obtained; and (2) a ∼4 dB receiver sensitivity enhancement is observed for 20 and 25 Gbaud quadrature phase shift keying signals and a 10 Gbaud 16-quadrature amplitude modulation signal.

3.
Opt Lett ; 42(9): 1840-1843, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28454174

ABSTRACT

An all-optical pilot-tone-based self-homodyne detection scheme using nonlinear wave mixing is experimentally demonstrated. Two scenarios are investigated using (1) multiple wavelength-division-multiplexed channels with sufficient power of the pilot tones and (2) a single channel with a low-power pilot tone. The eye diagram and bit error rate of the system are studied by tuning various parameters such as pump power, relative phase, and pilot-to-signal ratio.

4.
Opt Lett ; 41(23): 5434-5437, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27906206

ABSTRACT

All-optical phase regeneration of a binary phase-shift keying signal is demonstrated at 10-30 Gb/s without a phase-locked loop in a phase-sensitive amplification-based system using Brillouin amplification of the idler. The system achieves phase noise reduction of up to 56% and up to 11 dB OSNR gain at 10-5 bit error rate for the 10 Gb/s signal. The system's sensitivity to different parameters and stability is also evaluated.

SELECTION OF CITATIONS
SEARCH DETAIL