Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Vet Parasitol ; 327: 110146, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38382381

ABSTRACT

The faecal egg count reduction test (FECRT) is the most widely used method to assess treatment efficacy against gastrointestinal nematodes (GIN). Information on genera composition of the GIN community is not available with this test and it is commonly obtained by identifying cultured third-stage larvae (L3) or through molecular assays in the post-treatment survey, but results provided are usually only qualitative or semi-quantitative. The updated WAAVP guidelines now recommend assessing anthelmintic efficacy for each GIN genus/species separately (genus-specific FECRT), but this approach is poorly employed in Europe and in goats especially. For this reason, four FECRT trials were conducted using oxfendazole and eprinomectin in two Italian goat farms. Samples were processed individually using the McMaster technique and then pooled to create two samples from faeces of 5 animals each. Pooled samples were analysed using the McMaster and cultured for seven days at 26°C to obtain L3s. The genus-specific FECRT was based on larval identification, integrating coproculture and FEC results. Larvae were identified as Haemonchus, Trichostrongylus, Teladorsagia, Oesophagostomum / Chabertia and Bunostomum. Molecular assays (a multiplex real-time PCR and two end-point PCRs) were also implemented on pooled samples to support the morphological identification. The Spearmann Rho test confirmed a high correlation between the two approaches (Rho = 0.941 and Rho = 0.914 respectively for Haemonchus and Trichostrongylus, the two most common genera). Both oxfendazole and eprinomectin were effective in one farm, while none in the other farm (FECR = 75.9% and 73.3% respectively). In the second farm, the genus-specific FECRT highlighted a different response to treatment among genera: oxfendazole lacked efficacy against both Haemonchus and Trichostrongylus spp., eprinomectin only against Haemonchus, while all other genera were susceptible to both drugs. This study brings new attention on the importance of adopting a genus-specific approach to identify and quantify differences in susceptibility to anthelmintics among genera in goats, providing support for FECRT interpretation, anthelmintic resistance evaluation and evidence-based GIN control.


Subject(s)
Anthelmintics , Haemonchus , Ivermectin/analogs & derivatives , Nematoda , Animals , Goats , Ovum , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Nematoda/genetics , Haemonchus/genetics , Trichostrongylus , Feces , Parasite Egg Count/veterinary , Drug Resistance
2.
Int J Parasitol ; 53(5-6): 253-263, 2023 05.
Article in English | MEDLINE | ID: mdl-36754342

ABSTRACT

Schistosoma mansoni eggs are the main causative agents of the pathological manifestations of schistosomiasis. The eggs are laid in the host bloodstream, then they migrate through the intestinal wall into the lumen. However, a significant proportion of the eggs become lodged in the liver, where they cause inflammation and fibrosis. In this study, we focus on a specific group of proteins expressed by the egg, namely proteases and their inhibitors. These molecules are often involved in schistosome-host interactions, but are still unexplored in the egg stage. Using RNA-seq and comparative transcriptomics of immature and mature S. mansoni eggs, we mapped the portfolio of proteases and their inhibitors, and determined their gene expression levels. In addition, we compared these data with gene expression of proteases and their inhibitors in Fasciola hepatica eggs. Fasciola hepatica eggs served as a useful comparative model, as they do not migrate through tissues and inflict pathology. We detected transcription of 135 and 117 proteases in S. mansoni and F. hepatica eggs, respectively, with 87 identified as orthologous between the two species. In contrast, we observed only four orthologous inhibitors out of 21 and 16 identified in S. mansoni and F. hepatica eggs, respectively. Among others, we measured high and developmentally regulated levels of expression of metalloproteases in S. mansoni eggs, specifically aminopeptidase N1, endothelin-converting enzyme 1, and several leishmanolysin-like peptidases. We identified highly transcribed protease inhibitors serpin and alpha-2-macroglobulin that are unique to S. mansoni eggs, and antistasin-like inhibitor in F. hepatica eggs. This study provides new insights into the portfolio of proteases and inhibitors expressed by S. mansoni with potential roles in egg tissue migration, stimulation of angiogenesis, and interaction with host blood and immunity.


Subject(s)
Fasciola hepatica , Schistosomiasis , Animals , Fasciola hepatica/metabolism , Schistosoma mansoni , Peptide Hydrolases/genetics , Transcriptome , Endopeptidases/metabolism
3.
Sci Rep ; 12(1): 10308, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35725898

ABSTRACT

Fasciola hepatica is a global parasite of livestock which also causes a neglected zoonosis in humans. The parasite's communication with the host during its complicated lifecycle is based on an ingenious enzymatic apparatus which includes a variety of peptidases. These enzymes are implicated in parasite migration, pathogenesis of the disease, and modification of host immune response. Although the dynamics of proteolytic machinery produced by intra-mammalian F. hepatica life stages has been previously investigated in great detail, peptidases of the eggs so far received little scientific attention. In this study, we performed a comparative RNA-seq analysis aimed at identification of peptidases expressed in F. hepatica eggs, cultured at 37 °C to represent gall bladder retained eggs, for different time periods and employed mass spectrometry in order to identify and quantify peptidases translated in F. hepatica egg lysates. We demonstrated that F. hepatica eggs undergo significant molecular changes when cultured at the physiological temperature of the definitive host. Egg transcriptome is subject to numerous subtle changes while their proteome is even more variable. The peptidase profile is considerably modified on both transcriptome and proteome level. Finally, we measured and classified proteolytic activities in extracts from F. hepatica eggs using a library of fluorogenic substrates and peptidase class-selective inhibitors. Activities of threonine peptidases were detected constantly, while the cysteine peptidases prevailing in freshly laid eggs are substituted by aspartic peptidase and metallopeptidase activities in the later stages of egg development.


Subject(s)
Fasciola hepatica , Ovum , Peptide Hydrolases , Proteome , Transcriptome , Animals , Body Temperature , Fasciola hepatica/enzymology , Mammals/parasitology , Ovum/enzymology , Peptide Hydrolases/metabolism , Proteomics
4.
BMC Genomics ; 22(1): 274, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33858339

ABSTRACT

BACKGROUND: Ectoparasites from the family Diplozoidae (Platyhelminthes, Monogenea) belong to obligate haematophagous helminths of cyprinid fish. Current knowledge of these worms is for the most part limited to their morphological, phylogenetic, and population features. Information concerning the biochemical and molecular nature of physiological processes involved in host-parasite interaction, such as evasion of the immune system and its regulation, digestion of macromolecules, suppression of blood coagulation and inflammation, and effect on host tissue and physiology, is lacking. In this study, we report for the first time a comprehensive transcriptomic/secretome description of expressed genes and proteins secreted by the adult stage of Eudiplozoon nipponicum (Goto, 1891) Khotenovsky, 1985, an obligate sanguivorous monogenean which parasitises the gills of the common carp (Cyprinus carpio). RESULTS: RNA-seq raw reads (324,941 Roche 454 and 149,697,864 Illumina) were generated, de novo assembled, and filtered into 37,062 protein-coding transcripts. For 19,644 (53.0%) of them, we determined their sequential homologues. In silico functional analysis of E. nipponicum RNA-seq data revealed numerous transcripts, pathways, and GO terms responsible for immunomodulation (inhibitors of proteolytic enzymes, CD59-like proteins, fatty acid binding proteins), feeding (proteolytic enzymes cathepsins B, D, L1, and L3), and development (fructose 1,6-bisphosphatase, ferritin, and annexin). LC-MS/MS spectrometry analysis identified 721 proteins secreted by E. nipponicum with predominantly immunomodulatory and anti-inflammatory functions (peptidyl-prolyl cis-trans isomerase, homolog to SmKK7, tetraspanin) and ability to digest host macromolecules (cathepsins B, D, L1). CONCLUSIONS: In this study, we integrated two high-throughput sequencing techniques, mass spectrometry analysis, and comprehensive bioinformatics approach in order to arrive at the first comprehensive description of monogenean transcriptome and secretome. Exploration of E. nipponicum transcriptome-related nucleotide sequences and translated and secreted proteins offer a better understanding of molecular biology and biochemistry of these, often neglected, organisms. It enabled us to report the essential physiological pathways and protein molecules involved in their interactions with the fish hosts.


Subject(s)
Carps , Trematoda , Animals , Carps/genetics , Chromatography, Liquid , Gene Expression Profiling , Molecular Sequence Annotation , Phylogeny , Tandem Mass Spectrometry , Transcriptome , Trematoda/genetics
5.
Fish Shellfish Immunol ; 112: 179-190, 2021 May.
Article in English | MEDLINE | ID: mdl-32800986

ABSTRACT

Monogeneans parasitise mainly the outer structures of fish, such as the gills, fins, and skin, that is, tissues covered with a mucous layer. While attached by sclerotised structures to host's surface, monogeneans feed on its blood or epidermal cells and mucus. Besides being a rich source of nutrients, these tissues also contain humoral immune factors and immune cells, which are ready to launch defence mechanisms against the tegument or gastrointestinal tract of these invaders. The exploitation of hosts' resources by the Monogenea must, therefore, be accompanied by suppressive and immunomodulatory mechanisms which protect the parasites against attacks by host immune system. Elimination of hosts' cytotoxic molecules and evasion of host immune response is often mediated by proteins secreted by the parasites. The aim of this review is to summarise existing knowledge on fish immune responses against monogeneans. Results gleaned from experimental infections illustrate the various interactions between parasites and the innate and adaptive immune system of the fish. The involvement of monogenean molecules (mainly inhibitors of peptidases) in molecular communication with host immune system is discussed.


Subject(s)
Fishes/immunology , Host-Parasite Interactions/immunology , Immune System/physiology , Immunomodulation , Trematoda/physiology , Animals , Fishes/parasitology
6.
Mol Biochem Parasitol ; 235: 111248, 2020 01.
Article in English | MEDLINE | ID: mdl-31874193

ABSTRACT

The gills of the common carp, whose mucosal surface belongs to the key defence mechanisms of piscine immunity, can be infested with both the larval and adult stage of Eudiplozoon nipponicum (Monogenea). Although on their own, monogeneans do not considerably compromise their hosts' health status, fish with epithelial barriers damaged in parasite feeding and attachment sites are at an increased risk of bacterial challenge with possible harmful consequences. Several studies suggest that helminth parasites of teleost fish evade and manipulate host immune system via their excretory-secretory products, but our knowledge of these processes in the monogeneans is limited. Cysteine peptidase inhibitors (CPI), which are found in the secretions of numerous parasites, often induce immunosuppression by subverting Th1 mechanisms and drawing the immune system towards a Th2/Treg response. We employed the qPCR to test the effect of recently characterised CPI of E. nipponicum (rEnStef) on the mRNA expression of pro-inflammatory cytokine TNF-α and anti-inflammatory cytokine IL-10 produced by porcine macrophages in vitro. After an initial preincubation with rEnStef, we stimulated the macrophages using LPS. By inducing a Th1 pro-inflammatory response, we imitated the immune reaction during a bacterial challenge in tissue damaged by the feeding and attachment of E. nipponicum. We observed a significant dose-dependent downregulation of the expression of TNF-α and IL-10 cytokines. The observed suppression of TNF-alpha expression by rEnStef could result in decreased pathogen control, which might in turn lead to increased rates of secondary bacterial infections in fish infected by E. nipponicum.


Subject(s)
Cysteine Proteinase Inhibitors/pharmacology , Cytokines , Macrophages , Trematoda/immunology , Animals , Carps/parasitology , Cytokines/drug effects , Cytokines/metabolism , Immunomodulation , Interleukin-10/metabolism , Macrophages/drug effects , Macrophages/metabolism , Recombinant Proteins/pharmacology , Swine , Trematoda/metabolism , Tumor Necrosis Factor-alpha/drug effects , Tumor Necrosis Factor-alpha/metabolism
7.
Parasite ; 25: 61, 2018.
Article in English | MEDLINE | ID: mdl-30516130

ABSTRACT

BACKGROUND: Serpins are a superfamily of serine peptidase inhibitors that participate in the regulation of many physiological and cell peptidase-mediated processes in all organisms (e.g. in blood clotting, complement activation, fibrinolysis, inflammation, and programmed cell death). It was postulated that in the blood-feeding members of the monogenean family Diplozoidae, serpins could play an important role in the prevention of thrombus formation, activation of complement, inflammation in the host, and/or in the endogenous regulation of protein degradation. RESULTS: In silico analysis showed that the DNA and primary protein structures of serpin from Eudiplozoon nipponicum (EnSerp1) are similar to other members of the serpin superfamily. The inhibitory potential of EnSerp1 on four physiologically-relevant serine peptidases (trypsin, factor Xa, kallikrein, and plasmin) was demonstrated and its presence in the worm's excretory-secretory products (ESPs) was confirmed. CONCLUSION: EnSerp1 influences the activity of peptidases that play a role in blood coagulation, fibrinolysis, and complement activation. This inhibitory potential, together with the serpin's presence in ESPs, suggests that it is likely involved in host-parasite interactions and could be one of the molecules involved in the control of feeding and prevention of inflammatory responses.


Subject(s)
Serpins/chemistry , Serpins/genetics , Trematoda/genetics , Amino Acid Sequence , Animals , Base Sequence , Carps/parasitology , Computer Simulation , DNA, Helminth/chemistry , Fish Diseases/parasitology , Gills/parasitology , Phylogeny , Polymerase Chain Reaction , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sequence Alignment , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/genetics , Serine Proteinase Inhibitors/isolation & purification , Serine Proteinase Inhibitors/metabolism , Serpins/isolation & purification , Serpins/metabolism , Trematoda/chemistry , Trematoda/classification , Trematoda/enzymology , Trematode Infections/parasitology , Trematode Infections/veterinary
8.
Parasite ; 25: 4, 2018.
Article in English | MEDLINE | ID: mdl-29424339

ABSTRACT

Paradiplozoon hemiculteri (Ling, 1973), a member of the Diplozoidae, parasitizes the gills of Asian fish. Not only is the type material unavailable for this species, the original description was poor and somewhat conflicting, and adequate molecular data were not available. What is more, the available morphological and molecular data are inconsistent and fluctuate significantly. Here, we present a redescription of P. hemiculteri based on morphological and molecular data from new isolates collected from the type host, the sharpbelly Hemiculter leucisculus (Basilewsky, 1855), captured at the neotype locality (Shaoguan, Guangdong Province, southern China); a neotype for P. hemiculteri was designated from this collection. The length and width of the body, buccal suckers, pharynx, attachment clamps, sickle and the central hook handle were all measured and the shape of the anterior and posterior part of the median plate and anterior and posterior joining sclerites accurately documented. Phylogenetic analyses based on the sequences of the second rDNA internal transcribed spacer (ITS2) indicated that all new samples clustered together and differed clearly from sequences attributed to P. hemiculteri, which are deposited in GenBank. Our results confirm that P. hemiculteri is the only diplozoid that has demonstrably been found on the gills of H. leucisculus to date.


Subject(s)
Cyprinidae/parasitology , Fish Diseases/parasitology , Phylogeny , Trematoda/classification , Trematoda/genetics , Trematode Infections/veterinary , Animals , China/epidemiology , DNA, Helminth/chemistry , DNA, Ribosomal Spacer/chemistry , Fish Diseases/epidemiology , Gills/parasitology , Trematoda/isolation & purification , Trematode Infections/epidemiology , Trematode Infections/parasitology
9.
Sci Rep ; 7(1): 17526, 2017 12 13.
Article in English | MEDLINE | ID: mdl-29235483

ABSTRACT

Parasite inhibitors of cysteine peptidases are known to influence a vast range of processes linked to a degradation of either the parasites' own proteins or proteins native to their hosts. We characterise a novel type I cystatin (stefin) found in a sanguinivorous fish parasite Eudiplozoon nipponicum (Platyhelminthes: Monogenea). We have identified a transcript of its coding gene in the transcriptome of adult worms. Its amino acid sequence is similar to other stefins except for containing a legumain-binding domain, which is in this type of cystatins rather unusual. As expected, the recombinant form of E. nipponicum stefin (rEnStef) produced in Escherichia coli inhibits clan CA peptidases - cathepsins L and B of the worm - via the standard papain-binding domain. It also blocks haemoglobinolysis by cysteine peptidases in the worm's excretory-secretory products and soluble extracts. Furthermore, we had confirmed its ability to inhibit clan CD asparaginyl endopeptidase (legumain). The presence of a native EnStef in the excretory-secretory products of adult worms, detected by mass spectrometry, suggests that this protein has an important biological function at the host-parasite interface. We discuss the inhibitor's possible role in the regulation of blood digestion, modulation of antigen presentation, and in the regeneration of host tissues.


Subject(s)
Cystatins/metabolism , Helminth Proteins/metabolism , Platyhelminths/metabolism , Animals , Carps/parasitology , Cloning, Molecular , Computer Simulation , Cysteine Endopeptidases/metabolism , Escherichia coli , Helminth Proteins/genetics , Phylogeny , Protein Binding , Protein Conformation , Protein Domains , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Analysis, Protein
10.
Parasit Vectors ; 10(1): 261, 2017 May 25.
Article in English | MEDLINE | ID: mdl-28545591

ABSTRACT

BACKGROUND: Species of Diplozoon Palombi, 1949 (Monogenea: Diplozoidae) are blood-feeding ectoparasites mainly parasitising the gills of cyprinid fishes. Although these parasites have been the subject of numerous taxonomic, phylogenetic and ecological studies, the ultrastructure of the surface and haptor attachment structures remains almost unknown. In this study, we used transmission electron microscopy to examine the ultrastructure of attachment clamps and neodermal surface of Paradiplozoon homoion (Bychowsky & Nagibina, 1959), family Diplozoidae Palombi, 1949, thereby broadening our knowledge of platyhelminth biology. RESULTS: The hindbody surface of P. homoion is distinctly ridged, each ridge being supported by several muscle fibers and equipped with scales on the surface plasma membrane. Such structures have not been recorded previously in species of the family Diplozoidae. Comparisons of the surface structure of different body parts revealed slight differences in the thickness and number of organelles. Each of the clamps has a flattened bowl-like structure composed of sclerites, movable skeletal-like structures that are anchored by robust, radially oriented muscle bundles. The base of the posterior median plate sclerites is equipped with glandular cells possessing secretory vesicles. CONCLUSION: This study brings detailed ultrastructural data for the surface and haptoral attachment clamps of P. homoion and provides new insights into the ultrastructure of Diplozoidae. Glandular cells at the base of the attachment clamps responsible for sclerite development in diplozoid species were observed for the first time. Our findings support the hypothesis that the structure of particular neodermal compartments is similar within the Platyhelminthes. On the other hand, the diplozoid glandular system and the mechanism of sclerite development clearly merits further attention.


Subject(s)
Fish Diseases/parasitology , Trematoda/ultrastructure , Trematode Infections/veterinary , Animals , Cyprinidae/parasitology , Gills/parasitology , Microscopy, Electron, Transmission , Phylogeny , Trematoda/isolation & purification , Trematoda/physiology , Trematode Infections/parasitology
11.
Parasitology ; 143(4): 494-506, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26888494

ABSTRACT

In parasitic flatworms, acid endopeptidases are involved in crucial processes, including digestion, invasion, interactions with the host immune system, etc. In haematophagous monogeneans, however, no solid information has been available about the occurrence of these enzymes. Here we aimed to identify major cysteine and aspartic endopeptidase activities in Eudiplozoon nipponicum, an invasive haematophagous parasite of common carp. Employing biochemical, proteomic and molecular tools, we found that cysteine peptidase activities prevailed in soluble protein extracts and excretory/secretory products (ESP) of E. nipponicum; the major part was cathepsin L-like in nature supplemented with cathepsin B-like activity. Significant activity of the aspartic cathepsin D also occurred in soluble protein extracts. The degradation of haemoglobin in the presence of ESP and worm protein extracts was completely inhibited by a combination of cysteine and aspartic peptidase inhibitors, and diminished by particular cathepsin L, B and D inhibitors. Mass spectrometry revealed several tryptic peptides in ESP matching to two translated sequences of cathepsin L genes, which were amplified from cDNA of E. nipponicum and bioinformatically annotated. The dominance of cysteine peptidases of cathepsin L type in E. nipponicum resembles the situation in, e.g. fasciolid trematodes.


Subject(s)
Endopeptidases/metabolism , Platyhelminths/enzymology , Amino Acid Sequence , Animals , Base Sequence , Cathepsin B/metabolism , Cathepsin D/metabolism , Cathepsin L/genetics , Cathepsin L/metabolism , Chromatography, Liquid , Cysteine Proteases/metabolism , DNA, Complementary/chemistry , Endopeptidases/chemistry , Fluorescent Dyes/metabolism , Hydrogen-Ion Concentration , Peptides/metabolism , Platyhelminths/genetics , Polymerase Chain Reaction/methods , Protease Inhibitors/pharmacology , Sequence Alignment , Sequence Analysis, DNA , Tandem Mass Spectrometry
12.
Parasitology ; 141(2): 287-303, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24128742

ABSTRACT

This study focuses on mapping the life cycle of Cryptosporidium muris in two laboratory rodents; BALB/c mice and the southern multimammate rat Mastomys coucha, differing in their prepatent and patent periods. Both rodents were simultaneously experimentally inoculated with viable oocysts of C. muris (strain TS03). Animals were dissected and screened for the presence of the parasite using a combined morphological approach and nested PCR (SSU rRNA) at different times after inoculation. The occurrence of first developmental stages of C. muris in stomach was detected at 2.5 days post-infection (dpi). The presence of Type II merogony, appearing 36 h later than Type I merogony, was confirmed in both rodents. Oocysts exhibiting different size and thickness of their wall were observed from 5 dpi onwards in stomachs of both host models. The early phase of parasitization in BALB/c mice progressed rapidly, with a prepatent period of 7.5-10 days; whereas in M. coucha, the developmental stages of C. muris were first observed 12 h later in comparison with BALB/c mice and prepatent period was longer (18-21 days). Similarly, the patent periods of BALB/c mice and M. coucha differed considerably, i.e. 10-15 days vs chronic infection throughout the life of the host, respectively.


Subject(s)
Cryptosporidiosis/pathology , Cryptosporidium/growth & development , Life Cycle Stages , Animals , Cryptosporidiosis/parasitology , Cryptosporidium/physiology , Disease Models, Animal , Feces/parasitology , Female , Gastric Mucosa/pathology , Male , Mice , Mice, Inbred BALB C , Murinae , Oocysts , Species Specificity , Trophozoites
SELECTION OF CITATIONS
SEARCH DETAIL
...