Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Cardiovasc Dev Dis ; 10(11)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37998513

ABSTRACT

BACKGROUND: Congenital heart diseases (CHD) are the most common congenital malformations in newborns and remain the leading cause of mortality among infants under one year old. Molecular diagnosis is crucial to evaluate the recurrence risk and to address future prenatal diagnosis. Here, we describe two families with various forms of inherited non-syndromic CHD and the genetic work-up and resultant findings. METHODS: Next-generation sequencing (NGS) was employed in both families to uncover the genetic cause. In addition, we performed functional analysis to investigate the consequences of the identified variants in vitro. RESULTS: NGS identified possible causative variants in both families in the protein kinase domain of the TGFBR1 gene. These variants occurred on the same amino acid, but resulted in differently substituted amino acids (p.R398C/p.R398H). Both variants co-segregate with the disease, are extremely rare or unique, and occur in an evolutionary highly conserved domain of the protein. Furthermore, both variants demonstrated a significantly altered TGFBR1-smad signaling activity. Clinical investigation revealed that none of the carriers had (signs of) aortopathy. CONCLUSION: In conclusion, we describe two families, with various forms of inherited non-syndromic CHD without aortopathies, associated with unique/rare variants in TGFBR1 that display altered TGF-beta signaling. These findings highlight involvement of TGFBR1 in CHD, and warrant consideration of potential causative TGFBR1 variants also in CHD patients without aortopathies.

2.
Genet Med Open ; 1(1): 100811, 2023.
Article in English | MEDLINE | ID: mdl-38230350

ABSTRACT

Purpose: The aim of this study was to identify the monogenic cause of pulmonary arterial hypertension (PAH), a multifactorial and often fatal disease, in 2 unrelated consanguine families. Methods: We performed exome sequencing and validated variant pathogenicity by whole-blood RNA and protein expression analysis in both families. Further RNA sequencing of preserved lung tissue was performed to investigate the consequences on selected genes that are involved in angiogenesis, proliferation, and apoptosis. Results: We identified 2 rare biallelic variants in CAPNS1, encoding the regulatory subunit of calpain. The variants cosegregated with PAH in the families. Both variants lead to loss of function (LoF), which is demonstrated by aberrant splicing resulting in the complete absence of the CAPNS1 protein in affected patients. No other LoF CAPNS1 variant was identified in the genome data of more than 1000 patients with unresolved PAH. Conclusion: The calpain holoenzyme was previously linked to pulmonary vascular development and progression of PAH in patients. We demonstrated that biallelic LoF variants in CAPNS1 can cause idiopathic PAH by the complete absence of CAPNS1 protein. Screening of this gene in patients who are affected by PAH, especially with suspected autosomal recessive inheritance, should be considered.

4.
Circ Res ; 130(2): 166-180, 2022 01 21.
Article in English | MEDLINE | ID: mdl-34886679

ABSTRACT

RATIONALE: Dextro-transposition of the great arteries (D-TGA) is a severe congenital heart defect which affects approximately 1 in 4,000 live births. While there are several reports of D-TGA patients with rare variants in individual genes, the majority of D-TGA cases remain genetically elusive. Familial recurrence patterns and the observation that most cases with D-TGA are sporadic suggest a polygenic inheritance for the disorder, yet this remains unexplored. OBJECTIVE: We sought to study the role of common single nucleotide polymorphisms (SNPs) in risk for D-TGA. METHODS AND RESULTS: We conducted a genome-wide association study in an international set of 1,237 patients with D-TGA and identified a genome-wide significant susceptibility locus on chromosome 3p14.3, which was subsequently replicated in an independent case-control set (rs56219800, meta-analysis P=8.6x10-10, OR=0.69 per C allele). SNP-based heritability analysis showed that 25% of variance in susceptibility to D-TGA may be explained by common variants. A genome-wide polygenic risk score derived from the discovery set was significantly associated to D-TGA in the replication set (P=4x10-5). The genome-wide significant locus (3p14.3) co-localizes with a putative regulatory element that interacts with the promoter of WNT5A, which encodes the Wnt Family Member 5A protein known for its role in cardiac development in mice. We show that this element drives reporter gene activity in the developing heart of mice and zebrafish and is bound by the developmental transcription factor TBX20. We further demonstrate that TBX20 attenuates Wnt5a expression levels in the developing mouse heart. CONCLUSIONS: This work provides support for a polygenic architecture in D-TGA and identifies a susceptibility locus on chromosome 3p14.3 near WNT5A. Genomic and functional data support a causal role of WNT5A at the locus.


Subject(s)
Polymorphism, Single Nucleotide , Transposition of Great Vessels/genetics , Animals , Cells, Cultured , Humans , Mice , Multifactorial Inheritance , Myocytes, Cardiac/metabolism , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Transposition of Great Vessels/metabolism , Wnt-5a Protein/genetics , Wnt-5a Protein/metabolism , Zebrafish
6.
Genet Med ; 23(10): 1952-1960, 2021 10.
Article in English | MEDLINE | ID: mdl-34113005

ABSTRACT

PURPOSE: Rare genetic variants in KDR, encoding the vascular endothelial growth factor receptor 2 (VEGFR2), have been reported in patients with tetralogy of Fallot (TOF). However, their role in disease causality and pathogenesis remains unclear. METHODS: We conducted exome sequencing in a familial case of TOF and large-scale genetic studies, including burden testing, in >1,500 patients with TOF. We studied gene-targeted mice and conducted cell-based assays to explore the role of KDR genetic variation in the etiology of TOF. RESULTS: Exome sequencing in a family with two siblings affected by TOF revealed biallelic missense variants in KDR. Studies in knock-in mice and in HEK 293T cells identified embryonic lethality for one variant when occurring in the homozygous state, and a significantly reduced VEGFR2 phosphorylation for both variants. Rare variant burden analysis conducted in a set of 1,569 patients of European descent with TOF identified a 46-fold enrichment of protein-truncating variants (PTVs) in TOF cases compared to controls (P = 7 × 10-11). CONCLUSION: Rare KDR variants, in particular PTVs, strongly associate with TOF, likely in the setting of different inheritance patterns. Supported by genetic and in vivo and in vitro functional analysis, we propose loss-of-function of VEGFR2 as one of the mechanisms involved in the pathogenesis of TOF.


Subject(s)
Tetralogy of Fallot , Vascular Endothelial Growth Factor Receptor-2 , Animals , Genetic Predisposition to Disease , HEK293 Cells , Humans , Mice , Tetralogy of Fallot/genetics , Vascular Endothelial Growth Factor Receptor-2/genetics , Exome Sequencing
7.
J Clin Invest ; 131(5)2021 03 01.
Article in English | MEDLINE | ID: mdl-33645542

ABSTRACT

Congenital heart disease is the most common type of birth defect, accounting for one-third of all congenital anomalies. Using whole-exome sequencing of 2718 patients with congenital heart disease and a search in GeneMatcher, we identified 30 patients from 21 unrelated families of different ancestries with biallelic phospholipase D1 (PLD1) variants who presented predominantly with congenital cardiac valve defects. We also associated recessive PLD1 variants with isolated neonatal cardiomyopathy. Furthermore, we established that p.I668F is a founder variant among Ashkenazi Jews (allele frequency of ~2%) and describe the phenotypic spectrum of PLD1-associated congenital heart defects. PLD1 missense variants were overrepresented in regions of the protein critical for catalytic activity, and, correspondingly, we observed a strong reduction in enzymatic activity for most of the mutant proteins in an enzymatic assay. Finally, we demonstrate that PLD1 inhibition decreased endothelial-mesenchymal transition, an established pivotal early step in valvulogenesis. In conclusion, our study provides a more detailed understanding of disease mechanisms and phenotypic expression associated with PLD1 loss of function.


Subject(s)
Alleles , Heart Defects, Congenital , Heart Valve Diseases , Loss of Function Mutation , Phospholipase D , Female , Heart Defects, Congenital/enzymology , Heart Defects, Congenital/genetics , Heart Valve Diseases/enzymology , Heart Valve Diseases/genetics , Humans , Male , Phospholipase D/genetics , Phospholipase D/metabolism
8.
Genet Med ; 23(1): 103-110, 2021 01.
Article in English | MEDLINE | ID: mdl-32820247

ABSTRACT

PURPOSE: In this study we aimed to establish the genetic cause of a myriad of cardiovascular defects prevalent in individuals from a genetically isolated population, who were found to share a common ancestor in 1728. METHODS: Trio genome sequencing was carried out in an index patient with critical congenital heart disease (CHD); family members had either exome or Sanger sequencing. To confirm enrichment, we performed a gene-based association test and meta-analysis in two independent validation cohorts: one with 2685 CHD cases versus 4370 . These controls were also ancestry-matched (same as FTAA controls), and the other with 326 cases with familial thoracic aortic aneurysms (FTAA) and dissections versus 570 ancestry-matched controls. Functional consequences of identified variants were evaluated using expression studies. RESULTS: We identified a loss-of-function variant in the Notch target transcription factor-encoding gene HEY2. The homozygous state (n = 3) causes life-threatening congenital heart defects, while 80% of heterozygous carriers (n = 20) had cardiovascular defects, mainly CHD and FTAA of the ascending aorta. We confirm enrichment of rare risk variants in HEY2 functional domains after meta-analysis (MetaSKAT p = 0.018). Furthermore, we show that several identified variants lead to dysregulation of repression by HEY2. CONCLUSION: A homozygous germline loss-of-function variant in HEY2 leads to critical CHD. The majority of heterozygotes show a myriad of cardiovascular defects.


Subject(s)
Aortic Aneurysm, Thoracic , Heart Defects, Congenital , Aortic Aneurysm, Thoracic/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Genetic Predisposition to Disease , Germ Cells , Heart Defects, Congenital/genetics , Humans , Pedigree , Repressor Proteins
9.
Am J Med Genet A ; 164A(11): 2732-8, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25099673

ABSTRACT

Atrial septal defect (ASD) is the most common congenital heart defect clinically characterized by an opening in the atrial septum. Mutations in GATA4, TBX5, and NKX2-5 underlie this phenotype. Here, we report on the identification of a novel -6 G>C mutation in the highly conserved Kozak sequence in the 5'UTR of GATA4 in a small family presenting with two different forms of ASD. This is the first time a mutation in the Kozak sequence has been linked to heart disease. Functional assays demonstrate reduced GATA4 translation, though the GATA4 transcript levels remain normal. This leads to a reduction of GATA4 protein level, consequently diminishing the ability of GATA4 to transactivate target genes, as demonstrated by using the GATA4-driven Nppa (ANF) promoter. In conclusion, we identified a mutation in the GATA4 Kozak sequence that likely contributes to the pathogenesis of ASD. In general, it points to the importance of accurate protein level regulation during heart development and emphasizes the need to analyze the entire transcribed region when screening for mutations.


Subject(s)
GATA4 Transcription Factor/genetics , Heart Septal Defects, Atrial/genetics , Mutation , Nucleotide Motifs , Promoter Regions, Genetic , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , DNA Mutational Analysis , Electrocardiography , Female , GATA4 Transcription Factor/metabolism , Genotype , Heart Septal Defects, Atrial/diagnosis , Humans , Male , Middle Aged , Protein Biosynthesis , Transcriptional Activation , Young Adult
10.
Biochim Biophys Acta ; 1833(4): 833-9, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23147248

ABSTRACT

BACKGROUND: Dilated cardiomyopathy (DCM) is characterized by idiopathic dilatation and systolic contractile dysfunction of the ventricle(s) leading to an impaired systolic function. The origin of DCM is heterogeneous, but genetic transmission of the disease accounts for up to 50% of the cases. Mutations in alpha-tropomyosin (TPM1), a thin filament protein involved in structural and regulatory roles in muscle cells, are associated with hypertrophic cardiomyopathy (HCM) and very rarely with DCM. METHODS AND RESULTS: Here we present a large four-generation family in which DCM is inherited as an autosomal dominant trait. Six family members have a cardiomyopathy with the age of diagnosis ranging from 5 months to 52 years. The youngest affected was diagnosed with dilated and non-compaction cardiomyopathy (NCCM) and died at the age of five. Three additional children died young of suspected heart problems. We mapped the phenotype to chromosome 15 and subsequently identified a missense mutation in TPM1, resulting in a p.D84N amino acid substitution. In addition we sequenced 23 HCM/DCM genes using next generation sequencing. The TPM1 p.D84N was the only mutation identified. The mutation co-segregates with all clinically affected family members and significantly weakens the binding of tropomyosin to actin by 25%. CONCLUSIONS: We show that a mutation in TPM1 is associated with DCM and a lethal, early onset form of NCCM, probably as a result of diminished actin binding caused by weakened charge-charge interactions. Consequently, the screening of TPM1 in patients and families with DCM and/or (severe, early onset forms of) NCCM is warranted. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.


Subject(s)
Actin Cytoskeleton/genetics , Actins/genetics , Cardiomyopathy, Dilated/genetics , Mutation, Missense , Tropomyosin/genetics , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/pathology , Actins/metabolism , Adult , Amino Acid Sequence , Amino Acid Substitution , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/pathology , Fatal Outcome , Female , Genes, Dominant , Humans , Infant , Male , Middle Aged , Models, Molecular , Molecular Sequence Data , Pedigree , Phenotype , Protein Binding , Sequence Analysis, DNA , Tropomyosin/metabolism
11.
PLoS One ; 7(12): e52685, 2012.
Article in English | MEDLINE | ID: mdl-23285148

ABSTRACT

NKX2-5 is a homeodomain-containing transcription factor implied in both heart and thyroid development. Numerous mutations in NKX2-5 have been reported in individuals with congenital heart disease (CHD), but recently a select few have been associated with thyroid dysgenesis, among which the p.A119S variation. We sequenced NKX2-5 in 303 sporadic CHD patients and 38 families with at least two individuals with CHD. The p.A119S variation was identified in two unrelated patients: one was found in the proband of a family with four affected individuals with CHD and the other in a sporadic CHD patient. Clinical evaluation of heart and thyroid showed that the mutation did not segregate with CHD in the familial case, nor did any of the seven mutation carriers have thyroid abnormalities. We tested the functional consequences of the p.A119S variation in a cellular context by performing transactivation assays with promoters relevant for both heart and thyroid development in rat heart derived H10 cells and HELA cells. There was no difference between wildtype NKX2-5 and p.A119S NKX2-5 in activation of the investigated promoters in both cell lines. Additionally, we reviewed the current literature on the topic, showing that there is no clear evidence for a major pathogenic role of NKX2-5 mutations in thyroid dysgenesis. In conclusion, our study demonstrates that p.A119S does not cause CHD or TD and that it is a rare variation that behaves equal to wildtype NKX2-5. Furthermore, given the wealth of published evidence, we suggest that NKX2-5 mutations do not play a major pathogenic role in thyroid dysgenesis, and that genetic testing of NKX2-5 in TD is not warranted.


Subject(s)
Homeodomain Proteins/genetics , Mutation , Thyroid Dysgenesis/genetics , Transcription Factors/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Amino Acid Sequence , Animals , Cell Nucleus/metabolism , Child , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Female , Homeobox Protein Nkx-2.5 , Homeodomain Proteins/metabolism , Humans , Male , Middle Aged , Pedigree , Phenotype , Promoter Regions, Genetic , Protein Transport , Sequence Alignment , Transcription Factors/metabolism , Transcriptional Activation , Young Adult
12.
Cardiovasc Res ; 88(1): 130-9, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20519243

ABSTRACT

AIMS: Holt-Oram syndrome (HOS) is a heart/hand syndrome clinically characterized by upper limb and cardiac malformations. Mutations in T-box transcription factor 5 (TBX5) underlie this syndrome, the majority of which lead to premature stops. In this study, we present our functional analyses of five (novel) missense TBX5 mutations identified in HOS patients, most of whom presented with severe cardiac malformations. METHODS AND RESULTS: Functional characterization of mutant proteins shows a dramatic loss of DNA-binding capacity, as well as diminished binding to known cardiac interaction partners NKX2-5 and GATA4. The disturbance of these interactions leads to a loss of function, as measured by the reduced activation of Nppa and FGF10 in rat heart derived cells, although with variable severity. Two out of the five mutations are peculiar: one, p.H220del, is associated with additional extra-cardiac defects, perhaps by interfering with other T-box dependant pathways, and another, p.I106V, leads to limb defects only, which is supported by its normal interaction with cardiac-specific interaction partners. CONCLUSION: Overall, our data are consistent with the hypothesis that these novel missense mutations in TBX5 lead to functional haploinsufficiency and result in a reduced transcriptional activation of target genes, which is likely central to the pathogenesis of HOS.


Subject(s)
Heart Defects, Congenital/genetics , Mutation, Missense , T-Box Domain Proteins/genetics , Upper Extremity Deformities, Congenital/genetics , Abnormalities, Multiple/genetics , Abnormalities, Multiple/metabolism , Amino Acid Sequence , Animals , Atrial Natriuretic Factor/genetics , Binding Sites , Case-Control Studies , Cell Line , DNA Mutational Analysis , Electrophoretic Mobility Shift Assay , Fibroblast Growth Factor 10/genetics , GATA4 Transcription Factor/genetics , GATA4 Transcription Factor/metabolism , Genotype , Heart Defects, Congenital/metabolism , Heart Septal Defects, Atrial/genetics , Heart Septal Defects, Atrial/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Immunoprecipitation , Lower Extremity Deformities, Congenital/genetics , Lower Extremity Deformities, Congenital/metabolism , Models, Molecular , Molecular Sequence Data , Phenotype , Promoter Regions, Genetic , Protein Binding , Protein Conformation , Rats , Recombinant Fusion Proteins/metabolism , T-Box Domain Proteins/chemistry , T-Box Domain Proteins/metabolism , Transfection , Upper Extremity Deformities, Congenital/metabolism
13.
Circ Res ; 102(11): 1433-42, 2008 Jun 06.
Article in English | MEDLINE | ID: mdl-18451335

ABSTRACT

Holt-Oram syndrome (HOS) is a heart/hand syndrome clinically characterized by upper limb and cardiac malformations. Mutations in T-box transcription factor 5 (TBX5) underlie this syndrome. Here, we describe a large atypical HOS family in which affected patients have mild skeletal deformations and paroxysmal atrial fibrillation, but few have congenital heart disease. Sequencing of TBX5 revealed a novel mutation, c.373G>A, resulting in the missense mutation p.Gly125Arg, in all investigated affected family members, cosegregating with the disease. We demonstrate that the mutation results in normal Nkx2-5 interaction, is correctly targeted to the nucleus, has significantly enhanced DNA binding and activation of both the Nppa(Anf) and Cx40 promoter, and significantly augments expression of Nppa, Cx40, Kcnj2, and Tbx3 in comparison with wild-type TBX5. Thus, contrary to previously published HOS mutations, the p.G125R TBX5 mutation results in a gain-of-function. We speculate that the gain-of-function mechanism underlies the mild skeletal phenotype and paroxysmal atrial fibrillation and suggest a possible role of TBX5 in the development of (paroxysmal) atrial fibrillation based on a gain-of-function either through a direct stimulation of target genes via TBX5 or indirectly via TBX5 stimulated TBX3. These findings may warrant a renewed look at the phenotypes of families and individuals hitherto not classified as HOS or as atypical but presenting with paroxysmal atrial fibrillation, because these may possibly be the result of additional TBX5 gain-of-function mutations.


Subject(s)
Atrial Fibrillation/genetics , Mutation , T-Box Domain Proteins/genetics , Abnormalities, Multiple , Adolescent , Adult , Age of Onset , Animals , Atrial Fibrillation/diagnosis , Binding, Competitive , Cells, Cultured , Child , DNA/metabolism , DNA/pharmacology , Electrocardiography , Female , Gene Expression Regulation , Gene Transfer Techniques , Genetic Linkage , Genetic Testing , Homeobox Protein Nkx-2.5 , Homeodomain Proteins/metabolism , Humans , Male , Mice , Pedigree , Phenotype , Protein Transport/genetics , Rats , Syndrome , T-Box Domain Proteins/chemistry , T-Box Domain Proteins/metabolism , Transcription Factors/metabolism , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...