Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 4180, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37491373

ABSTRACT

All antibodies approved for cancer therapy are monoclonal IgGs but the biology of IgE, supported by comparative preclinical data, offers the potential for enhanced effector cell potency. Here we report a Phase I dose escalation trial (NCT02546921) with the primary objective of exploring the safety and tolerability of MOv18 IgE, a chimeric first-in-class IgE antibody, in patients with tumours expressing the relevant antigen, folate receptor-alpha. The trial incorporated skin prick and basophil activation tests (BAT) to select patients at lowest risk of allergic toxicity. Secondary objectives were exploration of anti-tumour activity, recommended Phase II dose, and pharmacokinetics. Dose escalation ranged from 70 µg-12 mg. The most common toxicity of MOv18 IgE is transient urticaria. A single patient experienced anaphylaxis, likely explained by detection of circulating basophils at baseline that could be activated by MOv18 IgE. The BAT assay was used to avoid enrolling further patients with reactive basophils. The safety profile is tolerable and maximum tolerated dose has not been reached, with evidence of anti-tumour activity observed in a patient with ovarian cancer. These results demonstrate the potential of IgE therapy for cancer.


Subject(s)
Immunoglobulin E , Ovarian Neoplasms , Female , Humans , Antibodies, Monoclonal/adverse effects , Basophils , Folic Acid
2.
Nat Commun ; 14(1): 2192, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37185332

ABSTRACT

Outcomes for half of patients with melanoma remain poor despite standard-of-care checkpoint inhibitor therapies. The prevalence of the melanoma-associated antigen chondroitin sulfate proteoglycan 4 (CSPG4) expression is ~70%, therefore effective immunotherapies directed at CSPG4 could benefit many patients. Since IgE exerts potent immune-activating functions in tissues, we engineer a monoclonal IgE antibody with human constant domains recognizing CSPG4 to target melanoma. CSPG4 IgE binds to human melanomas including metastases, mediates tumoricidal antibody-dependent cellular cytotoxicity and stimulates human IgE Fc-receptor-expressing monocytes towards pro-inflammatory phenotypes. IgE demonstrates anti-tumor activity in human melanoma xenograft models engrafted with human effector cells and is associated with enhanced macrophage infiltration, enriched monocyte and macrophage gene signatures and pro-inflammatory signaling pathways in the tumor microenvironment. IgE prolongs the survival of patient-derived xenograft-bearing mice reconstituted with autologous immune cells. No ex vivo activation of basophils in patient blood is measured in the presence of CSPG4 IgE. Our findings support a promising IgE-based immunotherapy for melanoma.


Subject(s)
Melanoma , Proteoglycans , Humans , Mice , Animals , Proteoglycans/metabolism , Antigens , Chondroitin Sulfate Proteoglycans , Melanoma/metabolism , Antibodies, Monoclonal/pharmacology , Immunoglobulin E , Tumor Microenvironment
3.
J Immunother Cancer ; 9(6)2021 06.
Article in English | MEDLINE | ID: mdl-34145033

ABSTRACT

BACKGROUND: Immuno-oncology therapies are now part of the standard of care for cancer in many indications. However, durable objective responses remain limited to a subset of patients. As such, there is a critical need to identify biomarkers that can predict or enrich for treatment response. So far, the majority of putative biomarkers consist of features of the tumor microenvironment (TME). However, in preclinical mouse models, the collection of tumor tissue for this type of analysis is a terminal procedure, obviating the ability to directly link potential biomarkers to long-term treatment outcomes. METHODS: To address this, we developed and validated a novel non-terminal tumor sampling method to enable biopsy of the TME in mouse models based on fine needle aspiration. RESULTS: We show that this technique enables repeated in-life sampling of subcutaneous flank tumors and yields sufficient material to support downstream analyses of tumor-infiltrating immune cells using methods such as flow cytometry and single-cell transcriptomics. Moreover, using this technique we demonstrate that we can link TME biomarkers to treatment response outcomes, which is not possible using the current method of terminal tumor sampling. CONCLUSION: Thus, this minimally invasive technique is an important refinement for the pharmacodynamic analysis of the TME facilitating paired evaluation of treatment response biomarkers with outcomes and reducing the number of animals used in preclinical research.


Subject(s)
Biomarkers, Tumor/metabolism , Biopsy, Fine-Needle/methods , Immunotherapy/methods , Animals , Cell Line, Tumor , Disease Models, Animal , Humans , Mice
4.
Cells ; 9(7)2020 07 07.
Article in English | MEDLINE | ID: mdl-32645919

ABSTRACT

Basophils are involved in manifestations of hypersensitivity, however, the current understanding of their propensity for activation and their prognostic value in cancer patients remains unclear. As in healthy and atopic individuals, basophil populations were identified in blood from ovarian cancer patients (n = 53) with diverse tumor histologies and treatment histories. Ex vivo basophil activation was measured by CD63 expression using the basophil activation test (BAT). Irrespective of prior treatment, basophils could be activated by stimulation with IgE- (anti-FcεRI and anti-IgE) and non-IgE (fMLP) mediated triggers. Basophil activation was detected by ex vivo exposure to paclitaxel, but not to other anti-cancer therapies, in agreement with a clinical history of systemic hypersensitivity reactions to paclitaxel. Protein and gene expression analyses support the presence of basophils (CCR3, CD123, FcεRI) and activated basophils (CD63, CD203c, tryptase) in ovarian tumors. Greater numbers of circulating basophils, cells with greater capacity for ex vivo stimulation (n = 35), and gene signatures indicating the presence of activated basophils in tumors (n = 439) were each associated with improved survival in ovarian cancer. Circulating basophils in cancer patients respond to IgE- and non-IgE-mediated signals and could help identify hypersensitivity to therapeutic agents. Activated circulating and tumor-infiltrating basophils may be potential biomarkers in oncology.


Subject(s)
Basophils/metabolism , Ovarian Neoplasms/metabolism , Basophils/immunology , Biomarkers, Tumor/immunology , Biomarkers, Tumor/metabolism , Female , Flow Cytometry , Humans , Immunoglobulin E/metabolism , Immunophenotyping , Ovarian Neoplasms/immunology , Tetraspanin 30/metabolism
5.
Cells ; 9(3)2020 03 09.
Article in English | MEDLINE | ID: mdl-32182948

ABSTRACT

The pathogenesis of autoimmune thyroid diseases (AITD) is poorly understood and the association between different immune features and the germline variants involved in AITD are yet unclear. We previously observed systemic depletion of IgG core fucosylation and antennary α1,2 fucosylation in peripheral blood mononuclear cells in AITD, correlated with anti-thyroid peroxidase antibody (TPOAb) levels. Fucose depletion is known to potentiate strong antibody-mediated NK cell activation and enhanced target antigen-expressing cell killing. In autoimmunity, this may translate to autoantibody-mediated immune cell recruitment and attack of self-antigen expressing normal tissues. Hence, we investigated the crosstalk between immune cell traits, secreted proteins, genetic variants and the glycosylation patterns of serum IgG, in a multi-omic and cross-sectional study of 622 individuals from the TwinsUK cohort, 172 of whom were diagnosed with AITD. We observed associations between two genetic variants (rs505922 and rs687621), AITD status, the secretion of Desmoglein-2 protein, and the profile of two IgG N-glycan traits in AITD, but further studies need to be performed to better understand their crosstalk in AITD. On the other side, enhanced afucosylated IgG was positively associated with activatory CD335- CD314+ CD158b+ NK cell subsets. Increased levels of the apoptosis and inflammation markers Caspase-2 and Interleukin-1α positively associated with AITD. Two genetic variants associated with AITD, rs1521 and rs3094228, were also associated with altered expression of the thyrocyte-expressed ligands known to recognize the NK cell immunoreceptors CD314 and CD158b. Our analyses reveal a combination of heightened Fc-active IgG antibodies, effector cells, cytokines and apoptotic signals in AITD, and AITD genetic variants associated with altered expression of thyrocyte-expressed ligands to NK cell immunoreceptors. Together, TPOAb responses, dysregulated immune features, germline variants associated with immunoactivity profiles, are consistent with a positive autoreactive antibody-dependent NK cell-mediated immune response likely drawn to the thyroid gland in AITD.


Subject(s)
Autoantibodies/metabolism , Iodide Peroxidase/metabolism , Killer Cells, Natural/metabolism , Leukocytes, Mononuclear/metabolism , Thyroid Diseases/metabolism , Autoantibodies/immunology , Cross-Sectional Studies , Fucose/immunology , Fucose/metabolism , Humans , Iodide Peroxidase/genetics , Killer Cells, Natural/immunology , Leukocytes, Mononuclear/immunology , Thyroid Diseases/immunology
7.
MAbs ; 12(1): 1685349, 2020.
Article in English | MEDLINE | ID: mdl-31769737

ABSTRACT

IgE monoclonal antibodies hold great potential for cancer therapy. Preclinical in vivo systems, particularly those in which the antibody recognizes the host species target antigen and binds to cognate Fc receptors, are often the closest approximation to human exposure and represent a key challenge for evaluating the safety of antibody-based therapies. We sought to develop an immunocompetent rat system to assess the safety of a rodent anti-tumor IgE, as a surrogate for the human therapeutic candidate. We generated a rat IgE against the human tumor-associated antigen chondroitin sulfate proteoglycan 4 (CSPG4) and cross-reactive for the rat antigen. We analyzed CSPG4 distribution in normal rat and human tissues and investigated the in vivo safety of the antibody by monitoring clinical signs and molecular biomarkers after systemic administration to immunocompetent rats. Human and rat CSPG4 expression in normal tissues were comparable. Animals receiving antibody exhibited transient mild to moderate adverse events accompanied by mild elevation of serum tryptase, but not of angiotensin II or cytokines implicated in allergic reactions or cytokine storm. In the long term, repeated antibody administration was well tolerated, with no changes in animal body weight, liver and kidney functions or blood cell counts. This model provides preclinical support for the safety profiling of IgE therapeutic antibodies. Due to the comparable antigen tissue distribution in human and rat, this model may also comprise an appropriate tool for proof-of-concept safety evaluations of different treatment approaches targeting CSPG4.


Subject(s)
Antigens, Neoplasm/immunology , Antineoplastic Agents, Immunological/administration & dosage , Chondroitin Sulfate Proteoglycans/immunology , Immunoglobulin E/administration & dosage , Membrane Proteins/immunology , Recombinant Fusion Proteins/administration & dosage , Animals , Antibody-Dependent Cell Cytotoxicity , Antineoplastic Agents, Immunological/adverse effects , Cell Line, Tumor , Cross Reactions , Female , Humans , Immunization, Secondary , Immunocompetence , Immunoglobulin E/adverse effects , Mice , Rats , Recombinant Fusion Proteins/adverse effects
8.
Article in English | MEDLINE | ID: mdl-31632959

ABSTRACT

Human immunoglobulin E (IgE) is the most extensively glycosylated antibody isotype so glycans attached to the seven N-glycosites (NGS) in its Fab and Fc domains may modulate its functions. However, targeted modification of glycans in multiply glycosylated proteins remains a challenge. Here, we applied an in vivo approach that allows the manipulation of IgE N-glycans, using a trastuzumab equivalent IgE (HER2-IgE) as a model. Taking advantage of plant inherent features, i.e., synthesis of largely homogeneous complex N-glycans and susceptibility to glycan engineering, we generated targeted glycoforms of HER2-IgE largely resembling those found in serum IgE. Plant-derived HER2-IgE exhibited N-glycans terminating with GlcNAc, galactose or sialic acid, lacking, or carrying core fucose and xylose. We were able to not only modulate the five NGSs naturally decorated with complex N-glycans, but to also induce targeted glycosylation at the usually unoccupied NGS6, thus increasing the overall glycosylation content of HER2-IgE. Recombinant human cell-derived HER2-IgE exhibited large N-glycan heterogeneity. All HER2-IgE variants demonstrated glycosylation-independent binding to the target antigen and the high affinity receptor FcεRI, and subsequent similar capacity to trigger mast cell degranulation. In contrast, binding to the low affinity receptor CD23 (FcεRII) was modulated by the glycan profile, with increased binding to IgE variants with glycans terminating with GlcNAc residues. Here we offer an efficient in planta approach to generate defined glycoforms on multiply glycosylated IgE, allowing the precise exploration of glycosylation-dependent activities.

10.
Cell ; 176(4): 757-774.e23, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30712866

ABSTRACT

ROCK-Myosin II drives fast rounded-amoeboid migration in cancer cells during metastatic dissemination. Analysis of human melanoma biopsies revealed that amoeboid melanoma cells with high Myosin II activity are predominant in the invasive fronts of primary tumors in proximity to CD206+CD163+ tumor-associated macrophages and vessels. Proteomic analysis shows that ROCK-Myosin II activity in amoeboid cancer cells controls an immunomodulatory secretome, enabling the recruitment of monocytes and their differentiation into tumor-promoting macrophages. Both amoeboid cancer cells and their associated macrophages support an abnormal vasculature, which ultimately facilitates tumor progression. Mechanistically, amoeboid cancer cells perpetuate their behavior via ROCK-Myosin II-driven IL-1α secretion and NF-κB activation. Using an array of tumor models, we show that high Myosin II activity in tumor cells reprograms the innate immune microenvironment to support tumor growth. We describe an unexpected role for Myosin II dynamics in cancer cells controlling myeloid function via secreted factors.


Subject(s)
Cell Movement/physiology , Myosin Type II/metabolism , Adult , Aged , Aged, 80 and over , Animals , Cell Adhesion , Cell Line, Tumor , Cell Movement/immunology , Cytoskeletal Proteins , Female , Humans , Interleukin-1alpha/metabolism , Male , Melanoma/pathology , Mice , Mice, Inbred C57BL , Mice, SCID , Middle Aged , NF-kappa B/metabolism , Neoplasms/immunology , Neoplasms/metabolism , Phosphorylation , Proteomics , Receptor Cross-Talk/physiology , Signal Transduction , Tumor Microenvironment/immunology
11.
J Cell Physiol ; 234(5): 6582-6593, 2019 05.
Article in English | MEDLINE | ID: mdl-30341901

ABSTRACT

Functional expression of voltage-gated Na+ channels (VGSCs) occurs in human carcinomas and promotes invasiveness in vitro and metastasis in vivo. Both neonatal and adult forms of Nav1.5 (nNav1.5 and aNav1.5, respectively) have been reported to be expressed at messenger RNA (mRNA) level in colorectal cancer (CRCa) cells. Here, three CRCa cell lines (HT29, HCT116 and SW620) were studied and found to express nNav1.5 mRNA and protein. In SW620 cells, adopted as a model, effects of gene silencing (by several small interfering RNAs [siRNAs]) selectively targeting nNav1.5 or aNav1.5 were determined on (a) channel activity and (b) invasiveness in vitro. Silencing nNav1.5 made the currents more "adult-like" and suppressed invasion by up to 73%. Importantly, subsequent application of the highly specific, general VGSC blocker, tetrodotoxin (TTX), had no further effect. Conversely, silencing aNav1.5 made the currents more "neonatal-like" but suppressed invasion by only 17% and TTX still induced a significant effect. Hypoxia increased invasiveness and this was also blocked completely by siRNA targeting nNav1.5. The effect of hypoxia was suppressed dose dependently by ranolazine, but its effect was lost in cells pretreated with nNav1.5-siRNA. We conclude that (a) functional nNav1.5 expression is common to human CRCa cells, (b) hypoxia increases the invasiveness of SW620 cells, (c) the VGSC-dependent invasiveness is driven predominantly by nNav1.5 under both normoxic and hypoxic conditions and (d) the hypoxia-induced increase in invasiveness is likely to be mediated by the persistent current component of nNav1.5.


Subject(s)
Colorectal Neoplasms/genetics , Gene Expression Regulation, Neoplastic/genetics , NAV1.5 Voltage-Gated Sodium Channel/genetics , Neoplasm Invasiveness/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/drug effects , Colonic Neoplasms/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Hypoxia/drug therapy , RNA, Small Interfering/genetics , Tetrodotoxin/pharmacology
12.
Clin Cancer Res ; 24(20): 5098-5111, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30068707

ABSTRACT

Purpose: Highly aggressive triple-negative breast cancers (TNBCs) lack validated therapeutic targets and have high risk of metastatic disease. Folate receptor alpha (FRα) is a central mediator of cell growth regulation that could serve as an important target for cancer therapy.Experimental Design: We evaluated FRα expression in breast cancers by genomic (n = 3,414) and IHC (n = 323) analyses and its association with clinical parameters and outcomes. We measured the functional contributions of FRα in TNBC biology by RNA interference and the antitumor functions of an antibody recognizing FRα (MOv18-IgG1), in vitro, and in human TNBC xenograft models.Results: FRα is overexpressed in significant proportions of aggressive basal like/TNBC tumors, and in postneoadjuvant chemotherapy-residual disease associated with a high risk of relapse. Expression is associated with worse overall survival. TNBCs show dysregulated expression of thymidylate synthase, folate hydrolase 1, and methylenetetrahydrofolate reductase, involved in folate metabolism. RNA interference to deplete FRα decreased Src and ERK signaling and resulted in reduction of cell growth. An anti-FRα antibody (MOv18-IgG1) conjugated with a Src inhibitor significantly restricted TNBC xenograft growth. Moreover, MOv18-IgG1 triggered immune-dependent cancer cell death in vitro by human volunteer and breast cancer patient immune cells, and significantly restricted orthotopic and patient-derived xenograft growth.Conclusions: FRα is overexpressed in high-grade TNBC and postchemotherapy residual tumors. It participates in cancer cell signaling and presents a promising target for therapeutic strategies such as ADCs, or passive immunotherapy priming Fc-mediated antitumor immune cell responses. Clin Cancer Res; 24(20); 5098-111. ©2018 AACR.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Folate Receptor 1/antagonists & inhibitors , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Animals , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/adverse effects , Cell Line, Tumor , Cell Proliferation , Cell Survival/genetics , Disease Models, Animal , Female , Folate Receptor 1/genetics , Folate Receptor 1/metabolism , Gene Expression , Humans , Immunohistochemistry , Mice , Models, Biological , Molecular Targeted Therapy , Neoplasms, Basal Cell , RNA Interference , Signal Transduction , Triple Negative Breast Neoplasms/pathology , Tumor Burden , Xenograft Model Antitumor Assays
14.
Front Immunol ; 9: 493, 2018.
Article in English | MEDLINE | ID: mdl-29628923

ABSTRACT

Selection of single antigen-specific B cells to identify their expressed antibodies is of considerable interest for evaluating human immune responses. Here, we present a method to identify single antibody-expressing cells using antigen-conjugated fluorescent beads. To establish this, we selected Folate Receptor alpha (FRα) as a model antigen and a mouse B cell line, expressing both the soluble and the membrane-bound forms of a human/mouse chimeric antibody (MOv18 IgG1) specific for FRα, as test antibody-expressing cells. Beads were conjugated to FRα using streptavidin/avidin-biotin bridges and used to select single cells expressing the membrane-bound form of anti-FRα. Bead-bound cells were single cell-sorted and processed for single cell RNA retrotranscription and PCR to isolate antibody heavy and light chain variable regions. Variable regions were then cloned and expressed as human IgG1/k antibodies. Like the original clone, engineered antibodies from single cells recognized native FRα. To evaluate whether antigen-coated beads could identify specific antibody-expressing cells in mixed immune cell populations, human peripheral blood mononuclear cells (PBMCs) were spiked with test antibody-expressing cells. Antigen-specific cells could comprise up to 75% of cells selected with antigen-conjugated beads when the frequency of the antigen-positive cells was 1:100 or higher. In PBMC pools, beads conjugated to recombinant antigens FRα and HER2 bound antigen-specific anti-FRα MOv18 and anti-HER2 Trastuzumab antibody-expressing cells, respectively. From melanoma patient-derived B cells selected with melanoma cell line-derived protein-coated fluorescent beads, we generated a monoclonal antibody that recognized melanoma antigen-coated beads. This approach may be further developed to facilitate analysis of B cells and their antibody profiles at the single cell level and to help unravel humoral immune repertoires.


Subject(s)
Antigens, Neoplasm/chemistry , Antineoplastic Agents, Immunological/immunology , B-Lymphocytes/immunology , Flow Cytometry/methods , Melanoma/immunology , Receptor, ErbB-2/immunology , Animals , Antigens, Neoplasm/immunology , Antineoplastic Agents, Immunological/chemistry , B-Lymphocytes/pathology , Female , Humans , Male , Melanoma/pathology , Mice , Receptor, ErbB-2/chemistry
15.
Oncoimmunology ; 7(3): e1395127, 2018.
Article in English | MEDLINE | ID: mdl-29375935

ABSTRACT

Antibody-drug conjugates (ADCs) are emerging as effective tools in cancer therapy, combining the antibody's exquisite specificity for the target antigen-expressing cancer cell together with the cytotoxic potency of the payload. Much success stems from the rational design of "toxic warheads", chemically linked to antibodies, and from fine-tuning the intricate properties of chemical linkers. Here, we focus on the antibody moiety of ADCs, dissecting the impact of Fab, linkers, isotype and Fc structure on the anti-tumoral and immune-activating functions of ADCs. Novel design approaches informed by antibody structural attributes present opportunities that may contribute to the success of next generation ADCs.

17.
Oncotarget ; 8(44): 78174-78192, 2017 Sep 29.
Article in English | MEDLINE | ID: mdl-29100459

ABSTRACT

Identification of mutations in the gene encoding the serine/threonine-protein kinase, BRAF, and constitutive activation of the mitogen-activated protein kinase (MAPK) pathway in around 50% of malignant melanomas have led to the development and regulatory approval of targeted pathway inhibitor drugs. A proportion of patients are intrinsically resistant to BRAF inhibitors, and most patients who initially respond, acquire resistance within months. In this review, we discuss pathway inhibitors and their mechanisms of resistance, and we focus on numerous efforts to improve clinical benefits through combining agents with disparate modes of action, including combinations with checkpoint inhibitor antibodies. We discuss the merits of combination strategies based on enhancing immune responses or overcoming tumor-associated immune escape mechanisms. Emerging insights into mechanisms of action, resistance pathways and their impact on host-tumor relationships will inform the design of optimal combinations therapies to improve outcomes for patients who currently do not benefit from recent treatment breakthroughs.

18.
Front Immunol ; 8: 1112, 2017.
Article in English | MEDLINE | ID: mdl-28959256

ABSTRACT

Monoclonal antibodies find broad application as therapy for various types of cancer by employing multiple mechanisms of action against tumors. Manipulating the Fc-mediated functions of antibodies that engage immune effector cells, such as NK cells, represents a strategy to influence effector cell activation and to enhance antibody potency and potentially efficacy. We developed a novel approach to generate and ascertain the functional attributes of Fc mutant monoclonal antibodies. This entailed coupling single expression vector (pVitro1) antibody cloning, using polymerase incomplete primer extension (PIPE) polymerase chain reaction, together with simultaneous Fc region point mutagenesis and high yield transient expression in human mammalian cells. Employing this, we engineered wild type, low (N297Q, NQ), and high (S239D/I332E, DE) FcR-binding Fc mutant monoclonal antibody panels recognizing two cancer antigens, HER2/neu and chondroitin sulfate proteoglycan 4. Antibodies were generated with universal mutagenic primers applicable to any IgG1 pVitro1 constructs, with high mutagenesis and transfection efficiency, in small culture volumes, at high yields and within 12 days from design to purified material. Antibody variants conserved their Fab-mediated recognition of target antigens and their direct anti-proliferative effects against cancer cells. Fc mutations had a significant impact on antibody interactions with Fc receptors (FcRs) on human NK cells, and consequently on the potency of NK cell activation, quantified by immune complex-mediated calcium mobilization and by antibody-dependent cellular cytotoxicity (ADCC) of tumor cells. This strategy for manipulation and testing of Fc region engagement with cognate FcRs can facilitate the design of antibodies with defined effector functions and potentially enhanced efficacy against tumor cells.

19.
Oncoimmunology ; 6(4): e1294296, 2017.
Article in English | MEDLINE | ID: mdl-28507802

ABSTRACT

Evidence of tumor-resident mature B cell and antibody compartments and reports of associations with favorable prognosis in malignant melanoma suggest that humoral immunity could participate in antitumor defense. Likely striving to confer immunological protection while being subjected to tumor-promoting immune tolerance, B cells may engender multiple functions, including antigen processing and presentation, cytokine-mediated signaling, antibody class switching, expression and secretion. We review key evidence in support of multifaceted immunological mechanisms by which B cells may counter or contribute to malignant melanoma, and we discuss their potential translational implications. Dissecting the contributions of tumor-associated humoral responses can inform future treatment avenues.

20.
J Proteomics ; 161: 81-87, 2017 05 24.
Article in English | MEDLINE | ID: mdl-28400175

ABSTRACT

The increasing biotechnological interest in human IgE antibodies demands advanced systems which allow their proper expression. However, this is still a challenge due to the complexity of the molecule, particularly regarding the diverse N-glycosylation pattern. Here, we present the expression of recombinant IgE in wild type and glycan-engineered Nicotiana benthamiana plants and in-depth N-glycosylation analyses. Mass spectrometric profiling revealed that plant IgE has a site occupancy rate that ranges from non-occupied at glycosite 6 (GS6) to 100% occupancy at GS1 and 2. Similarly to human cell-derived IgE, plant versions carry complex N-glycans at GS1-5 and oligomannosidic structures at GS7. Computational modelling suggests that spatial position (or orientation) of glycans can impair processing or site occupancy on adjacent glycosites. IgE expressed in glycoengineered and wild type plants carry, respectively, GnGn and plant-typical GnGnXF structures at large homogeneity. This contrasts with the glycan diversity of HEK cell-derived IgE, carrying at least 20 different glycoforms. Importantly, IgE glycoengineering allows the control of its glycosylation, a so far unmet need when using well-established expression systems. This enables the elucidation of possible carbohydrate-dependent IgE functions. SIGNIFICANCE: Targeted glycosylation of recombinant proteins may provide an advantage in therapeutic applications. Despite increasing biotechnological interest in IgE antibodies, knowledge and impact of glycosylation on this antibody class are scarce. With the ability to glyco-engineer recombinant IgE, we provide an important step towards the generation of IgE with other targeted N-glycans. This will facilitate detailed structure-function studies and may lead to the production of IgE with optimized activities.


Subject(s)
Antibodies, Monoclonal, Humanized , Immunoglobulin E/genetics , Plants, Genetically Modified/genetics , Proteomics/methods , Antibodies, Monoclonal, Humanized/genetics , Binding Sites , Glycosylation , Humans , Immunoglobulin E/chemistry , Polysaccharides/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Nicotiana/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...