Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Cells ; 13(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38920691

ABSTRACT

Neurological and neuropsychiatric disorders pose substantial challenges to public health, necessitating a comprehensive understanding of the molecular mechanisms underlying their pathogenesis. In recent years, the focus has shifted toward the intricate world of non-coding RNAs (ncRNAs), a class of RNA molecules that do not encode proteins but play pivotal roles in gene regulation and cellular processes. This review explores the emerging significance of ncRNAs in the context of neurological and neuropsychiatric disorders, shedding light on their diverse functions and regulatory mechanisms. The dysregulation of various ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), has been implicated in the pathophysiology of conditions such as Alzheimer's disease, Parkinson's disease, schizophrenia, and mood disorders. This review delves into the specific roles these ncRNAs play in modulating key cellular processes, including synaptic plasticity, neuroinflammation, and apoptosis, providing a nuanced understanding of their impact on disease progression. Furthermore, it discusses the potential diagnostic and therapeutic implications of targeting ncRNAs in neurological and neuropsychiatric disorders. The identification of specific ncRNA signatures holds promise for the development of novel biomarkers for early disease detection, while the manipulation of ncRNA expression offers innovative therapeutic avenues. Challenges and future directions in the field are also considered, highlighting the need for continued research to unravel the complexities of ncRNA-mediated regulatory networks in the context of neurological and neuropsychiatric disorders. This review aims to provide a comprehensive overview of the current state of knowledge and stimulate further exploration into the fascinating realm of ncRNAs in the brain's intricate landscape.


Subject(s)
Mental Disorders , Nervous System Diseases , RNA, Untranslated , Humans , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Nervous System Diseases/genetics , Nervous System Diseases/metabolism , Mental Disorders/genetics , Mental Disorders/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Gene Expression Regulation , MicroRNAs/genetics , MicroRNAs/metabolism
2.
Brief Funct Genomics ; 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37791426

ABSTRACT

The cases of inflammatory bowel disease (IBD) are increasing rapidly around the world. Due to the multifactorial causes of IBD, there is an urgent need to understand the pathogenesis of IBD. As such, the usage of high-throughput techniques to profile genetic mutations, microbiome environments, transcriptome and proteome (e.g. lipidome) is increasing to understand the molecular changes associated with IBD, including two major etiologies of IBD: Crohn disease (CD) and ulcerative colitis (UC). In the case of transcriptome data, RNA sequencing (RNA-seq) technique is used frequently. However, only protein-coding genes are analyzed, leaving behind all other RNAs, including non-coding RNAs (ncRNAs) to be unexplored. Among these ncRNAs, long non-coding RNAs (lncRNAs) may hold keys to understand the pathogenesis of IBD as lncRNAs are expressed in a cell/tissue-specific manner and dysregulated in a disease, such as IBD. However, it is rare that RNA-seq data are analyzed for lncRNAs. To fill this gap in knowledge, we re-analyzed RNA-seq data of CD and UC patients compared with the healthy donors to dissect the expression profiles of lncRNA genes. As inflammation plays key roles in the pathogenesis of IBD, we conducted loss-of-function experiments to provide functional data of IBD-specific lncRNA, lung cancer associated transcript 1 (LUCAT1), in an in vitro model of macrophage polarization. To further facilitate the lncRNA research in IBD, we built a web database, IBDB (https://ibd-db.shinyapps.io/IBDB/), to provide a one-stop-shop for expression profiling of protein-coding and lncRNA genes in IBD patients compared with healthy donors.

3.
Noncoding RNA ; 9(5)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37736896

ABSTRACT

The NLRP3 inflammasome plays a pivotal role in regulating inflammation and immune responses. Its activation can lead to an inflammatory response and pyroptotic cell death. This is beneficial in the case of infections, but excessive activation can lead to chronic inflammation and tissue damage. Moreover, while most of the mammalian genome is transcribed as RNAs, only a small fraction codes for proteins. Among non-protein-coding RNAs, long non-coding RNAs (lncRNAs) have been shown to play key roles in regulating gene expression and cellular processes. They interact with DNA, RNAs, and proteins, and their dysregulation can provide insights into disease mechanisms, including NLRP3 inflammasome activation. Here, we systematically analyzed previously published RNA sequencing (RNA-seq) data of NLRP3 inflammasome activation in monocytes/macrophages to uncover inflammasome-regulated lncRNA genes. To uncover the functional importance of inflammasome-regulated lncRNA genes, one inflammasome-regulated lncRNA, ENSG00000273124, was knocked down in an in vitro model of macrophage polarization. The results indicate that silencing of ENSG00000273124 resulted in the up-regulation tumor necrosis factor (TNF), suggesting that this lncRNA might be involved in pro-inflammatory response in macrophages. To make our analyzed data more accessible, we developed the web database InflammasomeDB.

4.
Noncoding RNA ; 9(4)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37624038

ABSTRACT

Breakthroughs in innovative techniques and instruments have driven the exploration of non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) [...].

5.
Noncoding RNA ; 9(4)2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37489459

ABSTRACT

Cancer and cardiovascular disease are the leading causes of death worldwide. Recent evidence suggests that these two life-threatening diseases share several features in disease progression, such as angiogenesis, fibrosis, and immune responses. This has led to the emergence of a new field called cardio-oncology. Doxorubicin is a chemotherapy drug widely used to treat cancer, such as bladder and breast cancer. However, this drug causes serious side effects, including acute ventricular dysfunction, cardiomyopathy, and heart failure. Based on this evidence, we hypothesize that comparing the expression profiles of cells and tissues treated with doxorubicin may yield new insights into the adverse effects of the drug on cellular activities. To test this hypothesis, we analyzed published RNA sequencing (RNA-seq) data from doxorubicin-treated cells to identify commonly differentially expressed genes, including long non-coding RNAs (lncRNAs) as they are known to be dysregulated in diseased tissues and cells. From our systematic analysis, we identified several doxorubicin-induced genes. To confirm these findings, we treated human cardiac fibroblasts with doxorubicin to record expression changes in the selected doxorubicin-induced genes and performed a loss-of-function experiment of the lncRNA MAP3K4-AS1. To further disseminate the analyzed data, we built the web database DoxoDB.

6.
Noncoding RNA ; 9(3)2023 May 08.
Article in English | MEDLINE | ID: mdl-37218990

ABSTRACT

Type II diabetes (T2D) is a growing health problem worldwide due to increased levels of obesity and can lead to other life-threatening diseases, such as cardiovascular and kidney diseases. As the number of individuals diagnosed with T2D rises, there is an urgent need to understand the pathogenesis of the disease in order to prevent further harm to the body caused by elevated blood glucose levels. Recent advances in long non-coding RNA (lncRNA) research may provide insights into the pathogenesis of T2D. Although lncRNAs can be readily detected in RNA sequencing (RNA-seq) data, most published datasets of T2D patients compared to healthy donors focus only on protein-coding genes, leaving lncRNAs to be undiscovered and understudied. To address this knowledge gap, we performed a secondary analysis of published RNA-seq data of T2D patients and of patients with related health complications to systematically analyze the expression changes of lncRNA genes in relation to the protein-coding genes. Since immune cells play important roles in T2D, we conducted loss-of-function experiments to provide functional data on the T2D-related lncRNA USP30-AS1, using an in vitro model of pro-inflammatory macrophage activation. To facilitate lncRNA research in T2D, we developed a web application, T2DB, to provide a one-stop-shop for expression profiling of protein-coding and lncRNA genes in T2D patients compared to healthy donors or subjects without T2D.

8.
Am J Physiol Cell Physiol ; 324(4): C837-C842, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36847441

ABSTRACT

Adenosine to inosine (A-to-I) RNA editing is one of the most frequent RNA modifications found in the mammalian transcriptome. Recent studies clearly indicate that RNA editing enzymes, adenosine deaminase acting on RNAs (ADARs), are upregulated in stressed cells and under disease conditions, suggesting that monitoring RNA editing patterns might be useful as diagnostic biomarkers of various diseases. Here, we provide an overview of epitranscriptomics, and focus particularly on the detection and analysis of A-to-I RNA editing using bioinformatic tools in RNA-seq data sets, as well as briefly reviewing the existing evidence about its involvement in disease progressions. Finally, we argue for the detection of RNA editing patterns as part of the routine analysis in RNA-based data sets, with the aim of accelerating the identification of RNA editing targets linked to disease.


Subject(s)
RNA Editing , RNA , Animals , RNA Editing/genetics , Transcriptome/genetics , Biomarkers , Mammals
9.
Genes (Basel) ; 14(1)2023 01 13.
Article in English | MEDLINE | ID: mdl-36672953

ABSTRACT

Characterized by cardiovascular disease and diabetes, cardiometabolic diseases are a major cause of mortality around the world. As such, there is an urgent need to understand the pathogenesis of cardiometabolic diseases. Increasing evidence suggests that most of the mammalian genome are transcribed as RNA, but only a few percent of them encode for proteins. All of the RNAs that do not encode for proteins are collectively called non-protein-coding RNAs (ncRNAs). Among these ncRNAs, long ncRNAs (lncRNAs) are considered as missing keys to understand the pathogeneses of various diseases, including cardiometabolic diseases. Given the increased interest in lncRNAs, in this study, we will summarize the latest trend in the lncRNA research from the perspective of cardiometabolism and disease by focusing on the major risk factors of cardiometabolic diseases: obesity, cholesterol, diabetes, and hypertension. Because genetic inheritance is unavoidable in cardiometabolic diseases, we paid special attention to the genetic factors of lncRNAs that may influence cardiometabolic diseases.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus , Hypertension , RNA, Long Noncoding , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cardiovascular Diseases/genetics , Cardiovascular Diseases/pathology , Diabetes Mellitus/genetics , Obesity/genetics , Mammals/genetics
10.
Stem Cell Res ; 65: 102961, 2022 12.
Article in English | MEDLINE | ID: mdl-36402078

ABSTRACT

Induced pluripotent stem (iPS) cell lines have wide valuable applications in experimental research, including developmental, pathological, and drug screening studies. Using integration-free episomal plasmids, we have generated a new iPS cell line from a 26-year-old healthy male donor. Characterization of the established cell line confirmed the expression of pluripotency markers, differentiation into the three germ layers, and absence of chromosomal abnormalities.


Subject(s)
Cell Line , Male , Humans , Adult
11.
Cells ; 11(22)2022 11 10.
Article in English | MEDLINE | ID: mdl-36428980

ABSTRACT

Although cardiac tumor formation is rare, accumulating evidence suggests that the two leading causes of deaths, cancers, and cardiovascular diseases are similar in terms of pathogenesis, including angiogenesis, immune responses, and fibrosis. These similarities have led to the creation of new exciting field of study called cardio-oncology. Here, we review the similarities between cancer and cardiovascular disease from the perspective of microRNAs (miRNAs). As miRNAs are well-known regulators of translation by binding to the 3'-untranslated regions (UTRs) of messenger RNAs (mRNAs), we carefully dissect how a specific set of miRNAs are both oncomiRs (miRNAs in cancer) and myomiRs (muscle-related miRNAs). Furthermore, from the standpoint of similar pathogenesis, miRNAs categories related to the similar pathogenesis are discussed; namely, angiomiRs, Immune-miRs, and fibromiRs.


Subject(s)
Cardiovascular Diseases , MicroRNAs , Neoplasms , Humans , MicroRNAs/metabolism , Cardiovascular Diseases/genetics , Neoplasms/genetics , Heart , RNA, Messenger
12.
Sci Rep ; 12(1): 19502, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36376362

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer with increasing incidence in western countries. Most HCC patients have advanced cancer at the time of diagnosis due to the asymptomatic nature of early-stage HCC and do not qualify for potentially curative surgical treatment, thus, highlighting the need for new therapeutic strategies. Long noncoding RNAs (lncRNAs) comprise a large and heterogeneous group of non-protein coding transcripts that play important regulatory roles in numerous biological processes in cancer. In this study, we performed RNA sequencing of liver biopsies from ten HCC, ten hepatitis C virus-associated HCC, and four normal livers to identify dysregulated lncRNAs in HCC. We show that the lncRNA p53-upregulated-regulator-of-p53-levels (PURPL) is upregulated in HCC biopsies and that its expression is p53-dependent in liver cancer cell lines. In addition, antisense oligonucleotide-mediated knockdown of PURPL inhibited cell proliferation, induced apoptosis, and sensitized HepG2 human HCC cells to treatment with the chemotherapeutic agent doxorubicin. In summary, our findings suggest that PURPL could serve as a new therapeutic target for reversing doxorubicin resistance in HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Apoptosis/genetics , Cell Proliferation/genetics , Doxorubicin/pharmacology , Cell Line , Gene Expression Regulation, Neoplastic , Cell Line, Tumor
14.
Ann Transl Med ; 10(13): 753, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35957723

ABSTRACT

Background and Objective: The recent emergence of epitranscriptomics provides an avenue for identifying RNA modifications implicated in the pathophysiology of human disease. To date, over 170 RNA modifications have been identified; these modifications are important because they can affect the fate of RNAs, including their decay, maturation, splicing, stability, and translational efficiency. Although RNA modifications have been reported in many tissues and disease contexts, detailed functional studies in the heart and cardiovascular disease are only beginning to be reported. Methods: The search for relevant articles related to epitranscriptomics was conducted by focusing on the cardiovascular system and disease in the PubMed database. Key Content and Findings: We summarize the recent findings of three epitranscriptomic marks-N6-methyladenosine (m6A), adenosine to inosine (A-to-I) RNA editing, and 5-methylcytosine (m5C) as other epitranscriptomic marks are not studied extensively in the cardiovascular system and disease. Conclusions: In this narrative review, the current status of cardiac epitranscriptomics is summarized to raise the awareness of this important field of study.

15.
Clin Transl Discov ; 2(3): e104, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35942159

ABSTRACT

Background: The global pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has swept through every part of the world. Because of its impact, international efforts have been underway to identify the variants of SARS-CoV-2 by genome sequencing and to understand the gene expression changes in COVID-19 patients compared to healthy donors using RNA sequencing (RNA-seq) assay. Within the last two and half years since the emergence of SARS-CoV-2, a large number of OMICS data of COVID-19 patients have accumulated. Yet, we are still far from understanding the disease mechanism. Further, many people suffer from long-term effects of COVID-19; calling for a more systematic way to data mine the generated OMICS data, especially RNA-seq data. Methods: By searching gene expression omnibus (GEO) using the key terms, COVID-19 and RNA-seq, 108 GEO entries were identified. Each of these studies was manually examined to categorize the studies into bulk or single-cell RNA-seq (scRNA-seq) followed by an inspection of their original articles. Results: The currently available RNA-seq data were generated from various types of patients' samples, and COVID-19 related sample materials have been sequenced at the level of RNA, including whole blood, different components of blood [e.g., plasma, peripheral blood mononuclear cells (PBMCs), leukocytes, lymphocytes, monocytes, T cells], nasal swabs, and autopsy samples (e.g., lung, heart, liver, kidney). Of these, RNA-seq studies using whole blood, PBMCs, nasal swabs and autopsy/biopsy samples were reviewed to highlight the major findings from RNA-seq data analysis. Conclusions: Based on the bulk and scRNA-seq data analysis, severe COVID-19 patients display shifts in cell populations, especially those of leukocytes and monocytes, possibly leading to cytokine storms and immune silence. These RNA-seq data form the foundation for further gene expression analysis using samples from individuals suffering from long COVID.

16.
Noncoding RNA ; 8(4)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35893236

ABSTRACT

The cardiopulmonary system delivers oxygen throughout the body via blood circulation. It is an essential part of the body to sustain the lives of organisms. The integral parts of the cardiopulmonary system-the heart and lungs-are constantly exposed to damaging agents (e.g., dust, viruses), and can be greatly affected by injuries caused by dysfunction in tissues (e.g., myocardial infarction). When damaged, mesenchymal cells, such as fibroblasts, are activated to become myofibroblasts to initiate fibrosis as part of a regenerative mechanism. In diseased states, the excess accumulation of extracellular matrices secreted by myofibroblasts results in further dysfunction in the damaged organs. These fibrotic tissues cannot easily be removed. Thus, there is a growing interest in understanding the fibrotic process, as well as finding biomolecules that can be targets for slowing down or potentially stopping fibrosis. Among these biomolecules, the interest in studying long non-coding RNAs (lncRNAs; any non-protein-coding RNAs longer than 200 nucleotides) has intensified in recent years. In this commentary, we summarize the current status of lncRNA research in the cardiopulmonary system by focusing on cardiac and pulmonary fibrosis.

17.
Noncoding RNA ; 8(4)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35893239

ABSTRACT

The largest solid organ in humans, the liver, performs a variety of functions to sustain life. When damaged, cells in the liver can regenerate themselves to maintain normal liver physiology. However, some damage is beyond repair, which necessitates liver transplantation. Increasing rates of obesity, Western diets (i.e., rich in processed carbohydrates and saturated fats), and cardiometabolic diseases are interlinked to liver diseases, including non-alcoholic fatty liver disease (NAFLD), which is a collective term to describe the excess accumulation of fat in the liver of people who drink little to no alcohol. Alarmingly, the prevalence of NAFLD extends to 25% of the world population, which calls for the urgent need to understand the disease mechanism of NAFLD. Here, we performed secondary analyses of published RNA sequencing (RNA-seq) data of NAFLD patients compared to healthy and obese individuals to identify long non-coding RNAs (lncRNAs) that may underly the disease mechanism of NAFLD. Similar to protein-coding genes, many lncRNAs are dysregulated in NAFLD patients compared to healthy and obese individuals, suggesting that understanding the functions of dysregulated lncRNAs may shed light on the pathology of NAFLD. To demonstrate the functional importance of lncRNAs in the liver, loss-of-function experiments were performed for one NAFLD-related lncRNA, LINC01639, which showed that it is involved in the regulation of genes related to apoptosis, TNF/TGF, cytokine signaling, and growth factors as well as genes upregulated in NAFLD. Since there is no lncRNA database focused on the liver, especially NAFLD, we built a web database, LiverDB, to further facilitate functional and mechanistic studies of hepatic lncRNAs.

18.
Noncoding RNA ; 8(3)2022 May 05.
Article in English | MEDLINE | ID: mdl-35645338

ABSTRACT

We are delighted to share with you our eleventh Journal Club and highlight some of the most interesting papers published recently [...].

19.
Mol Psychiatry ; 27(9): 3749-3759, 2022 09.
Article in English | MEDLINE | ID: mdl-35618886

ABSTRACT

The way in which brain morphology and proteome are remodeled during embryonal development, and how they are linked to the cellular metabolism, could be a key for elucidating the pathological mechanisms of certain neurodevelopmental disorders. Cerebral organoids derived from autism spectrum disorder (ASD) patients were generated to capture critical time-points in the neuronal development, and metabolism and protein expression were investigated. The early stages of development, when neurogenesis commences (day in vitro 39), appeared to be a critical timepoint in pathogenesis. In the first month of development, increased size in ASD-derived organoids were detected in comparison to the controls. The size of the organoids correlates with the number of proliferating cells (Ki-67 positive cells). A significant difference in energy metabolism and proteome phenotype was also observed in ASD organoids at this time point, specifically, prevalence of glycolysis over oxidative phosphorylation, decreased ATP production and mitochondrial respiratory chain activity, differently expressed cell adhesion proteins, cell cycle (spindle formation), cytoskeleton, and several transcription factors. Finally, ASD patients and controls derived organoids were clustered based on a differential expression of ten proteins-heat shock protein 27 (hsp27) phospho Ser 15, Pyk (FAK2), Elk-1, Rac1/cdc42, S6 ribosomal protein phospho Ser 240/Ser 244, Ha-ras, mTOR (FRAP) phospho Ser 2448, PKCα, FoxO3a, Src family phospho Tyr 416-at day 39 which could be defined as potential biomarkers and further investigated for potential drug development.


Subject(s)
Autism Spectrum Disorder , Biological Phenomena , Humans , Organoids , Autism Spectrum Disorder/genetics , Proteomics , Proteome/genetics , Phenotype , Energy Metabolism
20.
Am J Physiol Cell Physiol ; 322(6): C1110-C1116, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35508185

ABSTRACT

Fibroblasts play an important role in the pathogenic mechanisms of several socially significant diseases, including pulmonary and cardiovascular fibrosis, liver cirrhosis, systemic sclerosis, progressive kidney disease. The alterations of the epitranscriptome, including more than 170 distinct posttranscriptional RNA modifications or editing events, justified their investigation as an important modulator of fibrosis. Recent development of high-throughput methods allows the identification of RNA modification sites and their mechanistic aspect in the fibrosis development. The most common RNA modification is methylation of N6-adenosine deposited by the m6A methyltransferase complex (METTL3/14/16, WTAP, KIAA1429, and RBM15/15B), erased by demethylases (FTO and ALKBH5), and recognized by binding proteins (e.g., YTHDF1/2/3, YTHDC1/2, IGF2BP1/2/3, etc.). Adenosine to inosine (A-to-I) RNA editing is another abundant editing event converting adenosine to inosine in double-stranded RNA regions through the action of the adenosine deaminase (ADAR) proteins. Last but not least, 5-methylcytosine (m5C) regulates the stability and translation of mRNAs. All those RNA modifications have been observed in mRNA as well as the noncoding regions of pre-mRNA and noncoding RNAs (ncRNAs) and demonstrated to be involved in fibrosis in different cellular and animal models. This Mini-Review focuses on the latest research on epitranscriptomic marks related to fibroblast biology and fibrosis as well as elucidates the future research directions in this context.


Subject(s)
Adenosine , RNA , Adenosine/genetics , Adenosine/metabolism , Animals , Fibroblasts/metabolism , Fibrosis , Inosine/genetics , RNA/genetics , RNA/metabolism , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL