Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Adv ; 9(41): eadg5109, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37831776

ABSTRACT

Pancreatic carcinoma lacks effective therapeutic strategies resulting in poor prognosis. Transcriptional dysregulation due to alterations in KRAS and MYC affects initiation, development, and survival of this tumor type. Using patient-derived xenografts of KRAS- and MYC-driven pancreatic carcinoma, we show that coinhibition of topoisomerase 1 (TOP1) and bromodomain-containing protein 4 (BRD4) synergistically induces tumor regression by targeting promoter pause release. Comparing the nascent transcriptome with the recruitment of elongation and termination factors, we found that coinhibition of TOP1 and BRD4 disrupts recruitment of transcription termination factors. Thus, RNA polymerases transcribe downstream of genes for hundreds of kilobases leading to readthrough transcription. This occurs during replication, perturbing replisome progression and inducing DNA damage. The synergistic effect of TOP1 + BRD4 inhibition is specific to cancer cells leaving normal cells unaffected, highlighting the tumor's vulnerability to transcriptional defects. This preclinical study provides a mechanistic understanding of the benefit of combining TOP1 and BRD4 inhibitors to treat pancreatic carcinomas addicted to oncogenic drivers of transcription and replication.


Subject(s)
Pancreatic Neoplasms , Transcription Factors , Humans , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic , DNA Topoisomerases, Type I/metabolism , Pancreatic Neoplasms
2.
Int J Mol Sci ; 23(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35806029

ABSTRACT

The hemoglobin switch from fetal (HbF) to adult (HbA) has been studied intensively as an essential model for gene expression regulation, but also as a beneficial therapeutic approach for ß-hemoglobinopathies, towards the objective of reactivating HbF. The transcription factor LRF (Leukemia/lymphoma-related), encoded from the ZBTB7A gene has been implicated in fetal hemoglobin silencing, though has a wide range of functions that have not been fully clarified. We thus established the LRF/ZBTB7A-overexpressing and ZBTB7A-knockdown K562 (human erythroleukemia cell line) clones to assess fetal vs. adult hemoglobin production pre- and post-induction. Transgenic K562 clones were further developed and studied under the influence of epigenetic chromatin regulators, such as DNA methyl transferase 3 (DNMT3) and Histone Deacetylase 1 (HDAC1), to evaluate LRF's potential disturbance upon the aberrant epigenetic background and provide valuable information of the preferable epigenetic frame, in which LRF unfolds its action on the ß-type globin's expression. The ChIP-seq analysis demonstrated that LRF binds to γ-globin genes (HBG2/1) and apparently associates BCL11A for their silencing, but also during erythropoiesis induction, LRF binds the BGLT3 gene, promoting BGLT3-lncRNA production through the γ-δ intergenic region of ß-type globin's locus, triggering the transcriptional events from γ- to ß-globin switch. Our findings are supported by an up-to-date looping model, which highlights chromatin alterations during erythropoiesis at late stages of gestation, to establish an "open" chromatin conformation across the γ-δ intergenic region and accomplish ß-globin expression and hemoglobin switch.


Subject(s)
RNA, Long Noncoding , Transcription Factors , Adult , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line, Tumor , Chromatin/genetics , Chromatin/metabolism , DNA, Intergenic/genetics , DNA, Intergenic/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Fetal Hemoglobin/genetics , Fetal Hemoglobin/metabolism , Hemoglobin A/genetics , Hemoglobin A/metabolism , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , beta-Globins/genetics , beta-Globins/metabolism , gamma-Globins/genetics , gamma-Globins/metabolism
3.
OMICS ; 24(11): 660-666, 2020 11.
Article in English | MEDLINE | ID: mdl-33064577

ABSTRACT

Pharmacogenomics is rapidly assuming an integral part in modern health care. Still, its broad applicability relies on the feasibility of performing pharmacogenomic testing in all clinical settings, including in remote areas or resource-limited settings with budget restrictions. In this study, we describe the development and feasibility of rapid and reliable pharmacogenomics assays using a portable molecular biology laboratory, namely the 2MoBiL (Mobile Molecular Biology Laboratory). More precisely, we demonstrate that the genotyping of rs4149056, located within SLCO1B1, can be efficiently and reliably performed using the 2MoBiL portable laboratory and conventional benchtop laboratory equipment and a gold standard genotyping method (KASP assay) as directly comparable methodologies. Taking into account the compact size of 2MoBiL, which directly and positively impacts on its portability, and the high accuracy achieved, we conclude that the 2MoBiL-based genotyping method is warranted for further studies in clinical practices at remote areas and resource-limited as well as time-constrained planetary health settings. To contextualize the broader and potential future applications of 2MoBiL, we emphasize that genotyping of a limited set of clinically relevant single-nucleotide polymorphisms is often a common endpoint of genomics and pharmacogenomics discovery and translational research pipeline. Hence, rapid genotyping by 2MoBiL can be an essential catalyst for global implementation of pharmacogenomics and personalized medicine in the clinic. The Clinical Trial Registration number is NCT03093818.


Subject(s)
Laboratories , Mobile Health Units , Molecular Biology/methods , Pharmacogenetics/methods , Pharmacogenomic Testing/methods , Alleles , Genotyping Techniques/methods , Genotyping Techniques/standards , Humans , Molecular Biology/standards , Pharmacogenetics/standards , Pharmacogenomic Testing/standards , Translational Research, Biomedical , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL