Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 160(15)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38624127

ABSTRACT

We consider a binary mixture of chemically active particles that produce or consume solute molecules and that interact with each other through the long-range concentration fields they generate. We analytically calculate the effective phoretic mobility of these particles when the mixture is submitted to a constant, external concentration gradient, at leading order in the overall concentration. Relying on an analogy with the modeling of strong electrolytes, we show that the effective phoretic mobility decays with the square root of the concentration: our result is, therefore, a nonequilibrium counterpart to the celebrated Kohlrausch and Debye-Hückel-Onsager conductivity laws for electrolytes, which are extended here to particles with long-range nonreciprocal interactions. The effective mobility law we derive reveals the existence of a regime of maximal mobility and could find applications in the description of nanoscale transport phenomena in living cells.

2.
Phys Rev Lett ; 132(3): 037102, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38307067

ABSTRACT

Single-file transport refers to the motion of particles in a narrow channel, such that they cannot bypass each other. This constraint leads to strong correlations between the particles, described by correlation profiles, which measure the correlation between a generic observable and the density of particles at a given position and time. They have recently been shown to play a central role in single-file systems. Up to now, these correlations have only been determined for diffusive systems in the hydrodynamic limit. Here, we consider a model of reflecting point particles on the infinite line, with a general individual stochastic dynamics. We show that the correlation profiles take a simple universal form, at arbitrary time. We illustrate our approach by the study of the integrated current of particles through the origin, and apply our results to representative models such as Brownian particles, run-and-tumble particles and Lévy flights. We further emphasise the generality of our results by showing that they also apply beyond the 1D case, and to other observables.

3.
Phys Rev E ; 108(5-1): 054606, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38115513

ABSTRACT

We study the diffusivity of a tagged particle in a binary mixture of Brownian particles with nonreciprocal interactions. Numerical simulations reveal that, for a broad class of interaction potentials, nonreciprocity can significantly increase the long-time diffusion coefficient of tracer particles and that this diffusion enhancement is associated with a breakdown of the Einstein relation. These observations are quantified and confirmed via two different and complementary analytical approaches: (i) a linearized stochastic density field theory, which is particularly accurate in the limit of soft interactions, and (ii) a reduced two-body description, which is exact at leading order in the density of particles. The latter reveals that diffusion enhancement can be attributed to the formation of transiently propelled dimers of particles, whose cohesion and speed are controlled by the nonreciprocal interactions.

4.
Soft Matter ; 19(46): 8997-9005, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37965908

ABSTRACT

Modeling the couplings between active particles often neglects the possible many-body effects that control the propulsion mechanism. Accounting for such effects requires the explicit modeling of the molecular details at the origin of activity. Here, we take advantage of a recent two-dimensional model of isotropic active particles whose propulsion originates from the interactions between solute particles in the bath. The colloid catalyzes a chemical reaction in its vicinity, which results in a local phase separation of solute particles, and the density fluctuations of solute particles cause the enhanced diffusion of the colloid. In this paper, we investigate an assembly of such active particles, using (i) an explicit model, where the microscopic dynamics of the solute particles is accounted for; and (ii) an implicit model, whose parameters are inferred from the explicit model at infinite dilution. In the explicit solute model, the long-time diffusion coefficient of the active colloids strongly decreases with density, an effect which is not captured by the derived implicit model. This suggests that classical models, which usually decouple pair interactions from activity, fail to describe collective dynamics in active colloidal systems driven by solute-solute interactions.

5.
J Chem Phys ; 159(16)2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37873957

ABSTRACT

Describing analytically the transport properties of electrolytes, such as their conductivity or the self-diffusion of the ions, has been a central challenge of chemical physics for almost a century. In recent years, this question has regained some interest in light of Stochastic Density Field Theory (SDFT) - an analytical framework that allows the approximate determination of density correlations in fluctuating systems. In spite of the success of this theory to describe dilute electrolytes, its extension to concentrated solutions raises a number of technical difficulties, and requires simplified descriptions of the short-range repulsion between the ions. In this article, we discuss recent approximations that were proposed to compute the conductivity of electrolytes, in particular truncations of Coulomb interactions at short distances. We extend them to another observable (the self-diffusion coefficient of the ions) and compare them to earlier analytical approaches, such as the mean spherical approximation and mode-coupling theory. We show how the treatment of hydrodynamic effects in SDFT can be improved, that the choice of the modified Coulomb interactions significantly affects the determination of the properties of the electrolytes, and that comparison with other theories provides a guide to extend SDFT approaches in this context.

6.
Phys Rev Lett ; 130(21): 218201, 2023 May 26.
Article in English | MEDLINE | ID: mdl-37295085

ABSTRACT

Absolute negative mobility (ANM) refers to the situation where the average velocity of a driven tracer is opposite to the direction of the driving force. This effect was evidenced in different models of nonequilibrium transport in complex environments, whose description remains effective. Here, we provide a microscopic theory for this phenomenon. We show that it emerges in the model of an active tracer particle submitted to an external force and which evolves on a discrete lattice populated with mobile passive crowders. Resorting to a decoupling approximation, we compute analytically the velocity of the tracer particle as a function of the different parameters of the system and confront our results to numerical simulations. We determine the range of parameters where ANM can be observed, characterize the response of the environment to the displacement of the tracer, and clarify the mechanism underlying ANM and its relationship with negative differential mobility (another hallmark of driven systems far from the linear response).

7.
Phys Rev E ; 107(4-1): 044131, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37198815

ABSTRACT

Single-file diffusion refers to the motion of diffusive particles in narrow channels, so that they cannot bypass each other. This constraint leads to the subdiffusion of a tagged particle, called the tracer. This anomalous behavior results from the strong correlations that arise in this geometry between the tracer and the surrounding bath particles. Despite their importance, these bath-tracer correlations have long remained elusive, because their determination is a complex many-body problem. Recently, we have shown that, for several paradigmatic models of single-file diffusion such as the simple exclusion process, these bath-tracer correlations obey a simple exact closed equation. In this paper, we provide the full derivation of this equation, as well as an extension to another model of single-file transport: the double exclusion process. We also make the connection between our results and the ones obtained very recently by several other groups and which rely on the exact solution of different models obtained by the inverse scattering method.

8.
Phys Rev Lett ; 130(2): 020402, 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36706397

ABSTRACT

Tracer dynamics in the symmetric exclusion process (SEP), where hard-core particles diffuse on an infinite one-dimensional lattice, is a paradigmatic model of anomalous diffusion. While the equilibrium situation has received a lot of attention, the case where the tracer is driven by an external force, which provides a minimal model of nonequilibrium transport in confined crowded environments, remains largely unexplored. Indeed, the only available analytical results concern the means of both the position of the tracer and the lattice occupation numbers in its frame of reference and higher-order moments but only in the high-density limit. Here, we provide a general hydrodynamic framework that allows us to determine the first cumulants of the bath-tracer correlations and of the tracer's position in function of the driving force, up to quadratic order (beyond linear response). This result constitutes the first determination of the bias dependence of the variance of a driven tracer in the SEP for an arbitrary density. The framework presented here can be applied, beyond the SEP, to more general configurations of a driven tracer in interaction with obstacles in one dimension.

9.
Eur Phys J E Soft Matter ; 45(12): 96, 2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36459281

ABSTRACT

We study a two-dimensional model of an active isotropic colloid whose propulsion is linked to the interactions between solute particles of the bath. The colloid catalyzes a chemical reaction in its vicinity, that yields a local phase separation of solute particles. The density fluctuations of solute particles result in the enhanced diffusion of the colloid. Using numerical simulations, we thoroughly investigate the conditions under which activity occurs, and we establish a state diagram for the activity of the colloid as a function of the parameters of the model. We use the generated data to unravel a key observable that controls the existence and the intensity of activity: The filling fraction of the reaction area. Remarkably, we finally show that propulsion also occurs in three-dimensional geometries, which confirms the interest of this mechanism for experimental applications.


Subject(s)
Colloids , Diffusion
10.
Phys Rev E ; 105(5-1): 054139, 2022 May.
Article in English | MEDLINE | ID: mdl-35706275

ABSTRACT

We develop a general method to calculate the exact time dependence of the cumulants of the position of a tracer particle in a dense lattice gas of hardcore particles. More precisely, we calculate the cumulant-generating function associated with the position of a tagged particle at arbitrary time, and at leading order in the density of vacancies on the lattice. In particular, our approach gives access to the short-time dynamics of the cumulants of the tracer position, a regime in which few results are known. The generality of our approach is demonstrated by showing that it goes beyond the case of a symmetric 1D random walk and covers the important situations of (1) a biased tracer, (2) comblike structures, and (3) d-dimensional situations.

11.
Sci Adv ; 8(12): eabm5043, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35333581

ABSTRACT

In single-file transport particles diffuse in narrow channels while not overtaking each other. it is a fundamental model for the tracer subdiffusion observed in confined systems, such as zeolites or carbon nanotubes. This anomalous behavior originates from strong bath-tracer correlations in one dimension. Despite extensive effort, these remained elusive, because they involve an infinite hierarchy of equations. For the symmetric exclusion process, a paradigmatic model of single-file diffusion, we break the hierarchy to unveil and solve a closed exact equation satisfied by these correlations. Beyond quantifying the correlations, the role of this key equation as a tool for interacting particle systems is further demonstrated by its application to out-of-equilibrium situations, other observables, and other representative single-file systems.

12.
Phys Rev Lett ; 128(3): 038001, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35119883

ABSTRACT

We calculate the diffusion coefficient of an active tracer in a schematic crowded environment, represented as a lattice gas of passive particles with hardcore interactions. Starting from the master equation of the problem, we put forward a closure approximation that goes beyond trivial mean field and provides the diffusion coefficient for an arbitrary density of crowders in the system. We show that our approximation is accurate for a very wide range of parameters, and that it correctly captures numerous nonequilibrium effects, which are the signature of the activity in the system. In addition to the determination of the diffusion coefficient of the tracer, our approach allows us to characterize the perturbation of the environment induced by the displacement of the active tracer. Finally, we consider the asymptotic regimes of low and high densities, in which the expression of the diffusion coefficient of the tracer becomes explicit, and which we argue to be exact.

14.
Phys Rev E ; 106(6-1): 064608, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36671123

ABSTRACT

We study the dynamics of a tracer in a dense mixture of particles connected to different thermostats. Starting from the overdamped Langevin equations that describe the evolution of the system, we derive the expression of the self-diffusion coefficient of a tagged particle in the suspension, in the limit of soft interactions between the particles. Our derivation, which relies on the linearization of the Dean-Kawasaki equations obeyed by the density fields and on a path-integral representation of the dynamics of the tracer, extends previous derivations that held for tracers in contact with a single bath. Our analytical result is confronted to results from Brownian dynamics simulations. The agreement with numerical simulations is very good even for high densities. We show how the diffusivity of tracers can be affected by the activity of a dense environment of soft particles that may represent polymer coils-a result that could be of relevance in the interpretation of measurements of diffusivity in biological media. Finally, our analytical result is general and can be applied to the diffusion of tracers coupled to different types of fluctuating environments, provided that their evolution equations are linear and that the coupling between the tracer and the bath is weak.


Subject(s)
Molecular Dynamics Simulation , Suspensions , Diffusion
15.
Phys Rev Lett ; 127(22): 220601, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34889628

ABSTRACT

Single-file diffusion refers to the motion in narrow channels of particles which cannot bypass each other, and leads to tracer subdiffusion. Most approaches to this celebrated many-body problem were restricted to the description of the tracer only. Here, we go beyond this standard description by introducing and providing analytical results for generalized correlation profiles (GCPs) in the frame of the tracer. In addition to controlling the statistical properties of the tracer, these quantities fully characterize the correlations between the tracer position and the bath particles density. Considering the hydrodynamic limit of the problem, we determine the scaling form of the GCPs with space and time, and unveil a nonmonotonic dependence with the distance to the tracer despite the absence of any asymmetry. Our analytical approach provides several exact results for the GCPs for paradigmatic models of single-file diffusion, such as Brownian particles with hardcore repulsion, the symmetric exclusion process and the random average process. The range of applicability of our approach is further illustrated by considering (i) extensions to general interactions between particles, (ii) the out-of-equilibrium situation of an initial step of density, and (iii) beyond the hydrodynamic limit, the GCPs at arbitrary time in the dense limit.

16.
Phys Rev Lett ; 127(20): 208103, 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34860057

ABSTRACT

We examine the stochastic dynamics of two enzymes that are mechanically coupled to each other, e.g., through an elastic substrate or a fluid medium. The enzymes undergo conformational changes during their catalytic cycle, which itself is driven by stochastic steps along a biased chemical free energy landscape. We find conditions under which the enzymes can synchronize their catalytic steps, and discover that the coupling can lead to a significant enhancement in their overall catalytic rate. Both effects can be understood as arising from a global bifurcation in the underlying dynamical system at sufficiently strong coupling. Our findings suggest that, despite their molecular scale, enzymes can be cooperative and improve their performance in metabolic clusters.


Subject(s)
Biocatalysis , Enzymes/chemistry , Enzymes/metabolism , Stochastic Processes
17.
Phys Rev E ; 104(3-1): 034602, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34654103

ABSTRACT

The motion of active colloids is generally achieved through their anisotropy, as exemplified by Janus colloids. Recently, there was a growing interest in the propulsion of isotropic colloids, which requires some local symmetry breaking. Although several mechanisms for such propulsion were proposed, little is known about the role played by the interactions within the environment of the colloid, which can have a dramatic effect on its propulsion. Here, we propose a minimal model of an isotropic colloid in a bath of solute particles that interact with each other. These interactions lead to a spontaneous phase transition close to the colloid, to directed motion of the colloid over very long timescales and to significantly enhanced diffusion, in spite of the crowding induced by solute particles. We determine the range of parameters where this effect is observable in the model, and we propose an effective Langevin equation that accounts for it and allows one to determine the different contributions at stake in self-propulsion and enhanced diffusion.

18.
Phys Rev E ; 103(4): L040103, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34005907

ABSTRACT

The symmetric exclusion process (SEP), where particles hop on a one-dimensional lattice with the restriction that there can only be one particle per site, is a paradigmatic model of interacting particle systems. Recently, it has been shown that the nature of the initial conditions-annealed or quenched-has a quantitative impact on the long-time properties of tracer diffusion. However, so far, the cumulant generating function in the quenched case was only determined in the low-density limit and for the specific case of a half-filled system. Here, we derive it in the opposite dense limit with quenched initial conditions. Importantly, our approach also allows us to consider the nonequilibrium situations of (i) a biased tracer in the SEP and (ii) a symmetric tracer in a step of density. In the former situation, we show that the initial conditions have a striking impact, and change the very dependence of the cumulants on the bias.

19.
Phys Rev E ; 101(4-1): 040602, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32422759

ABSTRACT

We investigate the collective dynamics of self-propelled droplets, confined in a one-dimensional microfluidic channel. On the one hand, neighboring droplets align and form large trains of droplets moving in the same direction. On the other hand, the droplets condensate, leaving large regions with very low density. A careful examination of the interactions between two "colliding" droplets demonstrates that local alignment takes place as a result of the interplay between the dispersion of their speeds and the absence of Galilean invariance. Inspired by these observations, we propose a minimalistic 1D model of active particles reproducing such dynamical rules and, combining analytical arguments and numerical evidences, we show that the model exhibits a transition to collective motion in 1D for a large range of values of the control parameters. Condensation takes place as a transient phenomena, which tremendously slows down the dynamics, before the system eventually settles into a homogeneous aligned phase.

20.
Proc Natl Acad Sci U S A ; 117(22): 11894-11900, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32414931

ABSTRACT

Many functional units in biology, such as enzymes or molecular motors, are composed of several subunits that can reversibly assemble and disassemble. This includes oligomeric proteins composed of several smaller monomers, as well as protein complexes assembled from a few proteins. By studying the generic spatial transport properties of such proteins, we investigate here whether their ability to reversibly associate and dissociate may confer on them a functional advantage with respect to nondissociating proteins. In uniform environments with position-independent association-dissociation, we find that enhanced diffusion in the monomeric state coupled to reassociation into the functional oligomeric form leads to enhanced reactivity with localized targets. In nonuniform environments with position-dependent association-dissociation, caused by, for example, spatial gradients of an inhibiting chemical, we find that dissociating proteins generically tend to accumulate in regions where they are most stable, a process that we term "stabilitaxis."


Subject(s)
Dissociative Disorders/metabolism , Multiprotein Complexes/chemistry , Proteins , Cellular Microenvironment , Diffusion , Models, Theoretical , Multiprotein Complexes/metabolism , Polymerization , Protein Stability , Protein Transport , Proteins/chemistry , Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...