Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1867): 20210090, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36373930

ABSTRACT

Current policy is driving renewed impetus to restore forests to return ecological function, protect species, sequester carbon and secure livelihoods. Here we assess the contribution of tree planting to ecosystem restoration in tropical and sub-tropical Asia; we synthesize evidence on mortality and growth of planted trees at 176 sites and assess structural and biodiversity recovery of co-located actively restored and naturally regenerating forest plots. Mean mortality of planted trees was 18% 1 year after planting, increasing to 44% after 5 years. Mortality varied strongly by site and was typically ca 20% higher in open areas than degraded forest, with height at planting positively affecting survival. Size-standardized growth rates were negatively related to species-level wood density in degraded forest and plantations enrichment settings. Based on community-level data from 11 landscapes, active restoration resulted in faster accumulation of tree basal area and structural properties were closer to old-growth reference sites, relative to natural regeneration, but tree species richness did not differ. High variability in outcomes across sites indicates that planting for restoration is potentially rewarding but risky and context-dependent. Restoration projects must prepare for and manage commonly occurring challenges and align with efforts to protect and reconnect remaining forest areas. The abstract of this article is available in Bahasa Indonesia in the electronic supplementary material. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.


Subject(s)
Ecosystem , Tropical Climate , Biodiversity , Plants , Asia
2.
Ecol Evol ; 12(5): e8855, 2022 May.
Article in English | MEDLINE | ID: mdl-35509611

ABSTRACT

While reforestation is gaining momentum to moderate climate change via carbon sequestration, there is also an opportunity to use tree planting to confront declining global biodiversity. Where tree species vary in support of diversity, selecting appropriate species for planting could increase conservation effectiveness. We used a common garden experiment in Borneo using 24 native tree species to examine how variation among tree species in their support of beetle diversity is predicted by plant traits associated with "acquisitive" and "conservative" resource acquisition strategies. We evaluate three hypotheses: (1) beetle communities show fidelity to host identity as indicated by variation in abundance and diversity among tree species, (2) the leaf economic spectrum partially explains this variation as shown by beetle preferences for plant species that are predicted by plant traits, and (3) a small number of selected tree species can capture higher beetle species richness than a random tree species community. We found high variation among tree species in supporting three highly intercorrelated metrics of beetle communities: abundance, richness, and Shannon diversity. Variation in support of beetle communities was predicted by plant traits and varied by plant functional groups; within the dipterocarp family, high beetle diversity was predicted by conservative traits such as high wood density and slow growth, and in non-dipterocarps by the acquisitive traits of high foliar K and rapid growth. Using species accumulation curves and extrapolation to twice the original sample size, we show that 48 tree species were not enough to reach asymptote levels of beetle richness. Nevertheless, species accumulation curves of the six tree species with the highest richness had steeper slopes and supported 33% higher richness than a random community of tree species. Reforestation projects concerned about conservation can benefit by identifying tree species with a disproportional capacity to support biodiversity based on plant traits.

5.
Data Brief ; 6: 466-70, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26900591

ABSTRACT

The data presented in this paper is supporting the research article "Life history traits predict the response to increased light among 33 tropical rainforest tree species" [3]. We show basic growth and survival data collected over the 6 years duration of the experiment, as well as data from traits inventories covering 12 tree traits collected prior to and after a canopy reduction treatment in 2013. Further, we also include canopy closure and forest light environment data from measurements with hemispherical photographs before and after the treatment.

6.
Glob Chang Biol ; 19(12): 3858-71, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23907960

ABSTRACT

The global soil carbon pool is approximately three times larger than the contemporary atmospheric pool, therefore even minor changes to its integrity may have major implications for atmospheric CO2 concentrations. While theory predicts that the chemical composition of organic matter should constitute a master control on the temperature response of its decomposition, this relationship has not yet been fully demonstrated. We used laboratory incubations of forest soil organic matter (SOM) and fresh litter material together with NMR spectroscopy to make this connection between organic chemical composition and temperature sensitivity of decomposition. Temperature response of decomposition in both fresh litter and SOM was directly related to the chemical composition of the constituent organic matter, explaining 90% and 70% of the variance in Q10 in litter and SOM, respectively. The Q10 of litter decreased with increasing proportions of aromatic and O-aromatic compounds, and increased with increased contents of alkyl- and O-alkyl carbons. In contrast, in SOM, decomposition was affected only by carbonyl compounds. To reveal why a certain group of organic chemical compounds affected the temperature sensitivity of organic matter decomposition in litter and SOM, a more detailed characterization of the (13) C aromatic region using Heteronuclear Single Quantum Coherence (HSQC) was conducted. The results revealed considerable differences in the aromatic region between litter and SOM. This suggests that the correlation between chemical composition of organic matter and the temperature response of decomposition differed between litter and SOM. The temperature response of soil decomposition processes can thus be described by the chemical composition of its constituent organic matter, this paves the way for improved ecosystem modeling of biosphere feedbacks under a changing climate.


Subject(s)
Carbon Dioxide/metabolism , Ecosystem , Humic Substances , Soil/chemistry , Temperature , Climate Change , Magnetic Resonance Spectroscopy , Sweden
7.
Environ Sci Technol ; 46(7): 3950-6, 2012 Apr 03.
Article in English | MEDLINE | ID: mdl-22394413

ABSTRACT

Organic phosphorus (P) compounds represent a major component of soil P in many soils and are key sources of P for microbes and plants. Solution NMR (nuclear magnetic resonance spectroscopy) is a powerful technique for characterizing organic P species. However, (31)P NMR spectra are often complicated by overlapping peaks, which hampers identification and quantification of the numerous P species present in soils. Overlap is often exacerbated by the presence of paramagnetic metal ions, even if they are in complexes with EDTA following NaOH/EDTA extraction. By removing paramagnetic impurities using a new precipitation protocol, we achieved a dramatic improvement in spectral resolution. Furthermore, the obtained reduction in line widths enabled the use of multidimensional NMR methods to resolve overlapping (31)P signals. Using the new protocol on samples from two boreal humus soils with different Fe contents, 2D (1)H-(31)P correlation spectra allowed unambiguous identification of a large number of P species based on their (31)P and (1)H chemical shifts and their characteristic coupling patterns, which would not have been possible using previous protocols. This approach can be used to identify organic P species in samples from both terrestrial and aquatic environments increasing our understanding of organic P biogeochemistry.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Organic Chemicals/analysis , Phosphorus/analysis , Protons , Soil/chemistry , Edetic Acid/chemistry , Phosphorus Isotopes , Sodium Hydroxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...